# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import json import os import tempfile import unittest import uuid from typing import Dict, List, Tuple import numpy as np import torch from huggingface_hub import delete_repo import diffusers from diffusers import ( CMStochasticIterativeScheduler, DDIMScheduler, DEISMultistepScheduler, DiffusionPipeline, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, IPNDMScheduler, LMSDiscreteScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, logging, ) from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils.testing_utils import CaptureLogger, torch_device from ..others.test_utils import TOKEN, USER, is_staging_test torch.backends.cuda.matmul.allow_tf32 = False class SchedulerObject(SchedulerMixin, ConfigMixin): config_name = "config.json" @register_to_config def __init__( self, a=2, b=5, c=(2, 5), d="for diffusion", e=[1, 3], ): pass class SchedulerObject2(SchedulerMixin, ConfigMixin): config_name = "config.json" @register_to_config def __init__( self, a=2, b=5, c=(2, 5), d="for diffusion", f=[1, 3], ): pass class SchedulerObject3(SchedulerMixin, ConfigMixin): config_name = "config.json" @register_to_config def __init__( self, a=2, b=5, c=(2, 5), d="for diffusion", e=[1, 3], f=[1, 3], ): pass class SchedulerBaseTests(unittest.TestCase): def test_save_load_from_different_config(self): obj = SchedulerObject() # mock add obj class to `diffusers` setattr(diffusers, "SchedulerObject", SchedulerObject) logger = logging.get_logger("diffusers.configuration_utils") with tempfile.TemporaryDirectory() as tmpdirname: obj.save_config(tmpdirname) with CaptureLogger(logger) as cap_logger_1: config = SchedulerObject2.load_config(tmpdirname) new_obj_1 = SchedulerObject2.from_config(config) # now save a config parameter that is not expected with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f: data = json.load(f) data["unexpected"] = True with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f: json.dump(data, f) with CaptureLogger(logger) as cap_logger_2: config = SchedulerObject.load_config(tmpdirname) new_obj_2 = SchedulerObject.from_config(config) with CaptureLogger(logger) as cap_logger_3: config = SchedulerObject2.load_config(tmpdirname) new_obj_3 = SchedulerObject2.from_config(config) assert new_obj_1.__class__ == SchedulerObject2 assert new_obj_2.__class__ == SchedulerObject assert new_obj_3.__class__ == SchedulerObject2 assert cap_logger_1.out == "" assert ( cap_logger_2.out == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and" " will" " be ignored. Please verify your config.json configuration file.\n" ) assert cap_logger_2.out.replace("SchedulerObject", "SchedulerObject2") == cap_logger_3.out def test_save_load_compatible_schedulers(self): SchedulerObject2._compatibles = ["SchedulerObject"] SchedulerObject._compatibles = ["SchedulerObject2"] obj = SchedulerObject() # mock add obj class to `diffusers` setattr(diffusers, "SchedulerObject", SchedulerObject) setattr(diffusers, "SchedulerObject2", SchedulerObject2) logger = logging.get_logger("diffusers.configuration_utils") with tempfile.TemporaryDirectory() as tmpdirname: obj.save_config(tmpdirname) # now save a config parameter that is expected by another class, but not origin class with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f: data = json.load(f) data["f"] = [0, 0] data["unexpected"] = True with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f: json.dump(data, f) with CaptureLogger(logger) as cap_logger: config = SchedulerObject.load_config(tmpdirname) new_obj = SchedulerObject.from_config(config) assert new_obj.__class__ == SchedulerObject assert ( cap_logger.out == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and" " will" " be ignored. Please verify your config.json configuration file.\n" ) def test_save_load_from_different_config_comp_schedulers(self): SchedulerObject3._compatibles = ["SchedulerObject", "SchedulerObject2"] SchedulerObject2._compatibles = ["SchedulerObject", "SchedulerObject3"] SchedulerObject._compatibles = ["SchedulerObject2", "SchedulerObject3"] obj = SchedulerObject() # mock add obj class to `diffusers` setattr(diffusers, "SchedulerObject", SchedulerObject) setattr(diffusers, "SchedulerObject2", SchedulerObject2) setattr(diffusers, "SchedulerObject3", SchedulerObject3) logger = logging.get_logger("diffusers.configuration_utils") logger.setLevel(diffusers.logging.INFO) with tempfile.TemporaryDirectory() as tmpdirname: obj.save_config(tmpdirname) with CaptureLogger(logger) as cap_logger_1: config = SchedulerObject.load_config(tmpdirname) new_obj_1 = SchedulerObject.from_config(config) with CaptureLogger(logger) as cap_logger_2: config = SchedulerObject2.load_config(tmpdirname) new_obj_2 = SchedulerObject2.from_config(config) with CaptureLogger(logger) as cap_logger_3: config = SchedulerObject3.load_config(tmpdirname) new_obj_3 = SchedulerObject3.from_config(config) assert new_obj_1.__class__ == SchedulerObject assert new_obj_2.__class__ == SchedulerObject2 assert new_obj_3.__class__ == SchedulerObject3 assert cap_logger_1.out == "" assert cap_logger_2.out == "{'f'} was not found in config. Values will be initialized to default values.\n" assert cap_logger_3.out == "{'f'} was not found in config. Values will be initialized to default values.\n" def test_default_arguments_not_in_config(self): pipe = DiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16 ) assert pipe.scheduler.__class__ == DDIMScheduler # Default for DDIMScheduler assert pipe.scheduler.config.timestep_spacing == "leading" # Switch to a different one, verify we use the default for that class pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) assert pipe.scheduler.config.timestep_spacing == "linspace" # Override with kwargs pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") assert pipe.scheduler.config.timestep_spacing == "trailing" # Verify overridden kwargs stick pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) assert pipe.scheduler.config.timestep_spacing == "trailing" # And stick pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) assert pipe.scheduler.config.timestep_spacing == "trailing" def test_default_solver_type_after_switch(self): pipe = DiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16 ) assert pipe.scheduler.__class__ == DDIMScheduler pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config) assert pipe.scheduler.config.solver_type == "logrho" # Switch to UniPC, verify the solver is the default pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) assert pipe.scheduler.config.solver_type == "bh2" class SchedulerCommonTest(unittest.TestCase): scheduler_classes = () forward_default_kwargs = () @property def dummy_sample(self): batch_size = 4 num_channels = 3 height = 8 width = 8 sample = torch.rand((batch_size, num_channels, height, width)) return sample @property def dummy_sample_deter(self): batch_size = 4 num_channels = 3 height = 8 width = 8 num_elems = batch_size * num_channels * height * width sample = torch.arange(num_elems) sample = sample.reshape(num_channels, height, width, batch_size) sample = sample / num_elems sample = sample.permute(3, 0, 1, 2) return sample def get_scheduler_config(self): raise NotImplementedError def dummy_model(self): def model(sample, t, *args): # if t is a tensor, match the number of dimensions of sample if isinstance(t, torch.Tensor): num_dims = len(sample.shape) # pad t with 1s to match num_dims t = t.reshape(-1, *(1,) * (num_dims - 1)).to(sample.device).to(sample.dtype) return sample * t / (t + 1) return model def check_over_configs(self, time_step=0, **config): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: # TODO(Suraj) - delete the following two lines once DDPM, DDIM, and PNDM have timesteps casted to float by default if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): time_step = float(time_step) scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) if scheduler_class == CMStochasticIterativeScheduler: # Get valid timestep based on sigma_max, which should always be in timestep schedule. scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) time_step = scaled_sigma_max if scheduler_class == VQDiffusionScheduler: num_vec_classes = scheduler_config["num_vec_classes"] sample = self.dummy_sample(num_vec_classes) model = self.dummy_model(num_vec_classes) residual = model(sample, time_step) else: sample = self.dummy_sample residual = 0.1 * sample with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_pretrained(tmpdirname) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) new_scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps # Make sure `scale_model_input` is invoked to prevent a warning if scheduler_class == CMStochasticIterativeScheduler: # Get valid timestep based on sigma_max, which should always be in timestep schedule. _ = scheduler.scale_model_input(sample, scaled_sigma_max) _ = new_scheduler.scale_model_input(sample, scaled_sigma_max) elif scheduler_class != VQDiffusionScheduler: _ = scheduler.scale_model_input(sample, 0) _ = new_scheduler.scale_model_input(sample, 0) # Set the seed before step() as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): kwargs["generator"] = torch.manual_seed(0) output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): kwargs["generator"] = torch.manual_seed(0) new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def check_over_forward(self, time_step=0, **forward_kwargs): kwargs = dict(self.forward_default_kwargs) kwargs.update(forward_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): time_step = float(time_step) scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) if scheduler_class == VQDiffusionScheduler: num_vec_classes = scheduler_config["num_vec_classes"] sample = self.dummy_sample(num_vec_classes) model = self.dummy_model(num_vec_classes) residual = model(sample, time_step) else: sample = self.dummy_sample residual = 0.1 * sample with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_pretrained(tmpdirname) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) new_scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): kwargs["generator"] = torch.manual_seed(0) output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): kwargs["generator"] = torch.manual_seed(0) new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_from_save_pretrained(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: timestep = 1 if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): timestep = float(timestep) scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) if scheduler_class == CMStochasticIterativeScheduler: # Get valid timestep based on sigma_max, which should always be in timestep schedule. timestep = scheduler.sigma_to_t(scheduler.config.sigma_max) if scheduler_class == VQDiffusionScheduler: num_vec_classes = scheduler_config["num_vec_classes"] sample = self.dummy_sample(num_vec_classes) model = self.dummy_model(num_vec_classes) residual = model(sample, timestep) else: sample = self.dummy_sample residual = 0.1 * sample with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_pretrained(tmpdirname) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) new_scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): kwargs["generator"] = torch.manual_seed(0) output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): kwargs["generator"] = torch.manual_seed(0) new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_compatibles(self): for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) assert all(c is not None for c in scheduler.compatibles) for comp_scheduler_cls in scheduler.compatibles: comp_scheduler = comp_scheduler_cls.from_config(scheduler.config) assert comp_scheduler is not None new_scheduler = scheduler_class.from_config(comp_scheduler.config) new_scheduler_config = {k: v for k, v in new_scheduler.config.items() if k in scheduler.config} scheduler_diff = {k: v for k, v in new_scheduler.config.items() if k not in scheduler.config} # make sure that configs are essentially identical assert new_scheduler_config == dict(scheduler.config) # make sure that only differences are for configs that are not in init init_keys = inspect.signature(scheduler_class.__init__).parameters.keys() assert set(scheduler_diff.keys()).intersection(set(init_keys)) == set() def test_from_pretrained(self): for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_pretrained(tmpdirname) new_scheduler = scheduler_class.from_pretrained(tmpdirname) # `_use_default_values` should not exist for just saved & loaded scheduler scheduler_config = dict(scheduler.config) del scheduler_config["_use_default_values"] assert scheduler_config == new_scheduler.config def test_step_shape(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) timestep_0 = 1 timestep_1 = 0 for scheduler_class in self.scheduler_classes: if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): timestep_0 = float(timestep_0) timestep_1 = float(timestep_1) scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) if scheduler_class == VQDiffusionScheduler: num_vec_classes = scheduler_config["num_vec_classes"] sample = self.dummy_sample(num_vec_classes) model = self.dummy_model(num_vec_classes) residual = model(sample, timestep_0) else: sample = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) def test_scheduler_outputs_equivalence(self): def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", 50) timestep = 0 if len(self.scheduler_classes) > 0 and self.scheduler_classes[0] == IPNDMScheduler: timestep = 1 for scheduler_class in self.scheduler_classes: if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): timestep = float(timestep) scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) if scheduler_class == CMStochasticIterativeScheduler: # Get valid timestep based on sigma_max, which should always be in timestep schedule. timestep = scheduler.sigma_to_t(scheduler.config.sigma_max) if scheduler_class == VQDiffusionScheduler: num_vec_classes = scheduler_config["num_vec_classes"] sample = self.dummy_sample(num_vec_classes) model = self.dummy_model(num_vec_classes) residual = model(sample, timestep) else: sample = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): kwargs["generator"] = torch.manual_seed(0) outputs_dict = scheduler.step(residual, timestep, sample, **kwargs) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps # Set the seed before state as some schedulers are stochastic like EulerAncestralDiscreteScheduler, EulerDiscreteScheduler if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): kwargs["generator"] = torch.manual_seed(0) outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs) recursive_check(outputs_tuple, outputs_dict) def test_scheduler_public_api(self): for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) if scheduler_class != VQDiffusionScheduler: self.assertTrue( hasattr(scheduler, "init_noise_sigma"), f"{scheduler_class} does not implement a required attribute `init_noise_sigma`", ) self.assertTrue( hasattr(scheduler, "scale_model_input"), ( f"{scheduler_class} does not implement a required class method `scale_model_input(sample," " timestep)`" ), ) self.assertTrue( hasattr(scheduler, "step"), f"{scheduler_class} does not implement a required class method `step(...)`", ) if scheduler_class != VQDiffusionScheduler: sample = self.dummy_sample if scheduler_class == CMStochasticIterativeScheduler: # Get valid timestep based on sigma_max, which should always be in timestep schedule. scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max) else: scaled_sample = scheduler.scale_model_input(sample, 0.0) self.assertEqual(sample.shape, scaled_sample.shape) def test_add_noise_device(self): for scheduler_class in self.scheduler_classes: if scheduler_class == IPNDMScheduler: continue scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(100) sample = self.dummy_sample.to(torch_device) if scheduler_class == CMStochasticIterativeScheduler: # Get valid timestep based on sigma_max, which should always be in timestep schedule. scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max) else: scaled_sample = scheduler.scale_model_input(sample, 0.0) self.assertEqual(sample.shape, scaled_sample.shape) noise = torch.randn_like(scaled_sample).to(torch_device) t = scheduler.timesteps[5][None] noised = scheduler.add_noise(scaled_sample, noise, t) self.assertEqual(noised.shape, scaled_sample.shape) def test_deprecated_kwargs(self): for scheduler_class in self.scheduler_classes: has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0 if has_kwarg_in_model_class and not has_deprecated_kwarg: raise ValueError( f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated" " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if" " there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" " []`" ) if not has_kwarg_in_model_class and has_deprecated_kwarg: raise ValueError( f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated" " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`" f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the" " deprecated argument from `_deprecated_kwargs = []`" ) def test_trained_betas(self): for scheduler_class in self.scheduler_classes: if scheduler_class in (VQDiffusionScheduler, CMStochasticIterativeScheduler): continue scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config, trained_betas=np.array([0.1, 0.3])) with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_pretrained(tmpdirname) new_scheduler = scheduler_class.from_pretrained(tmpdirname) assert scheduler.betas.tolist() == new_scheduler.betas.tolist() def test_getattr_is_correct(self): for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) # save some things to test scheduler.dummy_attribute = 5 scheduler.register_to_config(test_attribute=5) logger = logging.get_logger("diffusers.configuration_utils") # 30 for warning logger.setLevel(30) with CaptureLogger(logger) as cap_logger: assert hasattr(scheduler, "dummy_attribute") assert getattr(scheduler, "dummy_attribute") == 5 assert scheduler.dummy_attribute == 5 # no warning should be thrown assert cap_logger.out == "" logger = logging.get_logger("diffusers.schedulers.schedulering_utils") # 30 for warning logger.setLevel(30) with CaptureLogger(logger) as cap_logger: assert hasattr(scheduler, "save_pretrained") fn = scheduler.save_pretrained fn_1 = getattr(scheduler, "save_pretrained") assert fn == fn_1 # no warning should be thrown assert cap_logger.out == "" # warning should be thrown with self.assertWarns(FutureWarning): assert scheduler.test_attribute == 5 with self.assertWarns(FutureWarning): assert getattr(scheduler, "test_attribute") == 5 with self.assertRaises(AttributeError) as error: scheduler.does_not_exist assert str(error.exception) == f"'{type(scheduler).__name__}' object has no attribute 'does_not_exist'" @is_staging_test class SchedulerPushToHubTester(unittest.TestCase): identifier = uuid.uuid4() repo_id = f"test-scheduler-{identifier}" org_repo_id = f"valid_org/{repo_id}-org" def test_push_to_hub(self): scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) scheduler.push_to_hub(self.repo_id, token=TOKEN) scheduler_loaded = DDIMScheduler.from_pretrained(f"{USER}/{self.repo_id}") assert type(scheduler) == type(scheduler_loaded) # Reset repo delete_repo(token=TOKEN, repo_id=self.repo_id) # Push to hub via save_config with tempfile.TemporaryDirectory() as tmp_dir: scheduler.save_config(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN) scheduler_loaded = DDIMScheduler.from_pretrained(f"{USER}/{self.repo_id}") assert type(scheduler) == type(scheduler_loaded) # Reset repo delete_repo(token=TOKEN, repo_id=self.repo_id) def test_push_to_hub_in_organization(self): scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) scheduler.push_to_hub(self.org_repo_id, token=TOKEN) scheduler_loaded = DDIMScheduler.from_pretrained(self.org_repo_id) assert type(scheduler) == type(scheduler_loaded) # Reset repo delete_repo(token=TOKEN, repo_id=self.org_repo_id) # Push to hub via save_config with tempfile.TemporaryDirectory() as tmp_dir: scheduler.save_config(tmp_dir, repo_id=self.org_repo_id, push_to_hub=True, token=TOKEN) scheduler_loaded = DDIMScheduler.from_pretrained(self.org_repo_id) assert type(scheduler) == type(scheduler_loaded) # Reset repo delete_repo(token=TOKEN, repo_id=self.org_repo_id)