from src.diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d_inpaint import StableDiffusionLDM3DInpaintPipeline from PIL import Image import numpy as np from diffusers import UNet2DConditionModel # Cargar con weights inicializados random unet = UNet2DConditionModel.from_pretrained("pablodawson/ldm3d-inpainting", cache_dir="cache", subfolder="unet", in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True) pipe = StableDiffusionLDM3DInpaintPipeline.from_pretrained("Intel/ldm3d-4c", cache_dir="cache" ) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" input_image = Image.open("output_rgb.jpg") depth_image = Image.open("output_depth.png") mask_image = Image.open("output_mask.png") output = pipe(prompt=prompt, image=input_image, mask_image=mask_image, depth_image=depth_image, num_inference_steps=20) rgb = output["rgb"][0] depth = output["depth"][0] rgb.save("rgb.png") depth.save("depth.png")