import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImg2ImgPipeline, UNet2DConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class StableUnCLIPImg2ImgPipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableUnCLIPImg2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess image_latents_params = frozenset([]) def get_dummy_components(self): embedder_hidden_size = 32 embedder_projection_dim = embedder_hidden_size # image encoding components feature_extractor = CLIPImageProcessor(crop_size=32, size=32) torch.manual_seed(0) image_encoder = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=embedder_hidden_size, projection_dim=embedder_projection_dim, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, ) ) # regular denoising components torch.manual_seed(0) image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedder_hidden_size) image_noising_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2") torch.manual_seed(0) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") torch.manual_seed(0) text_encoder = CLIPTextModel( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=embedder_hidden_size, projection_dim=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) ) torch.manual_seed(0) unet = UNet2DConditionModel( sample_size=32, in_channels=4, out_channels=4, down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"), block_out_channels=(32, 64), attention_head_dim=(2, 4), class_embed_type="projection", # The class embeddings are the noise augmented image embeddings. # I.e. the image embeddings concated with the noised embeddings of the same dimension projection_class_embeddings_input_dim=embedder_projection_dim * 2, cross_attention_dim=embedder_hidden_size, layers_per_block=1, upcast_attention=True, use_linear_projection=True, ) torch.manual_seed(0) scheduler = DDIMScheduler( beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, prediction_type="v_prediction", set_alpha_to_one=False, steps_offset=1, ) torch.manual_seed(0) vae = AutoencoderKL() components = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def get_dummy_inputs(self, device, seed=0, pil_image=True): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) if pil_image: input_image = input_image * 0.5 + 0.5 input_image = input_image.clamp(0, 1) input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy() input_image = DiffusionPipeline.numpy_to_pil(input_image)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def test_image_embeds_none(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableUnCLIPImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs.update({"image_embeds": None}) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass # because GPU undeterminism requires a looser check. def test_attention_slicing_forward_pass(self): test_max_difference = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference) # Overriding PipelineTesterMixin::test_inference_batch_single_identical # because undeterminism requires a looser check. def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=1e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=False) @slow @require_torch_gpu class StableUnCLIPImg2ImgPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_unclip_l_img2img(self): input_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) pipe = StableUnCLIPImg2ImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16 ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() generator = torch.Generator(device="cpu").manual_seed(0) output = pipe(input_image, "anime turle", generator=generator, output_type="np") image = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(image, expected_image) def test_stable_unclip_h_img2img(self): input_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) pipe = StableUnCLIPImg2ImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16 ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() generator = torch.Generator(device="cpu").manual_seed(0) output = pipe(input_image, "anime turle", generator=generator, output_type="np") image = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(image, expected_image) def test_stable_unclip_img2img_pipeline_with_sequential_cpu_offloading(self): input_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = StableUnCLIPImg2ImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _ = pipe( input_image, "anime turtle", num_inference_steps=2, output_type="np", ) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9