import gradio as gr from transformers import TrOCRProcessor, VisionEncoderDecoderModel import requests, re, base64 from PIL import Image from io import BytesIO processor = TrOCRProcessor.from_pretrained("microsoft/trocr-small-printed") model = VisionEncoderDecoderModel.from_pretrained("pENrknSoysneed/8kun-captcha-ocr-meme") # # load image examples # urls = [ # 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nfcb5.png', # 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/p57fn.png', # 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w2yp7.png', # 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/pme86.png', # 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/w4nfx.png', # 'https://storage.googleapis.com/trocr-captcha.appspot.com/captcha_images_v2/nf8b8.png' # ] # for idx, url in enumerate(urls): # image = Image.open(requests.get(url, stream=True).raw) # image.save(f"image_{idx}.png") def process_image(image): # prepare image image_data = re.sub('^data:image/.+;base64,', '', image) im = Image.open(BytesIO(base64.b64decode(image_data))) #Take's the picture pixel_values = processor(im, return_tensors="pt").pixel_values # generate (no beam search) generated_ids = model.generate(pixel_values) # decode generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text title = "8kun captcha solver 1 in 8" description = "Due to events. in 8chan staff moderation. I am attacking it. The gamergate shitposting days are over. and so is 8chan." # article = "

TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models | Github Repo

" # examples =[["image_0.png"], ["image_1.png"], ["image_2.png"], ["image_3.png"], ["image_4.png"], ["image_5.png"]] #css = """.output_image, .input_image {height: 600px !important}""" iface = gr.Interface(fn=process_image, # inputs=gr.inputs.Image(type="pil"), inputs=gr.Textbox(placeholder="base64 string (right-click => copy-link) ..."), outputs=gr.outputs.Textbox(), title=title, description=description, # article=article, # examples=examples ) iface.launch(debug=True)