import os import time import argparse import numpy as np import torch import torch.nn.functional as F def rgb2gray(img): r, g, b = torch.split(img, 1, dim=1) return torch.mul(r, 0.299) + torch.mul(g, 0.587) + torch.mul(b, 0.114) def reparameterize(mu, logvar): std = logvar.mul(0.5).exp_() eps = torch.cuda.FloatTensor(std.size()).normal_() return eps.mul(std).add_(mu) def kl_loss(mu, logvar, prior_mu=0): v_kl = mu.add(-prior_mu).pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar) v_kl = v_kl.sum(dim=-1).mul_(-0.5) # (batch, 2) return v_kl def reconstruction_loss(prediction, target, size_average=False): error = (prediction - target).view(prediction.size(0), -1) error = error ** 2 error = torch.sum(error, dim=-1) if size_average: error = error.mean() else: error = error.sum() return error def load_model(model, pretrained): weights = torch.load(pretrained) pretrained_dict = weights['model'].state_dict() model_dict = model.state_dict() # 1. filter out unnecessary keys pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} # 2. overwrite entries in the existing state dict model_dict.update(pretrained_dict) # 3. load the new state dict model.load_state_dict(model_dict) def save_checkpoint(model_path, model, epoch, iteration, name): model_out_path = model_path + name + "model_epoch_{}_iter_{}.pth".format(epoch, iteration) state = {"epoch": epoch, "model": model} if not os.path.exists(model_path): os.makedirs(model_path) torch.save(state, model_out_path) print("Checkpoint saved to {}".format(model_out_path)) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def MMD_Loss(fc_nir, fc_vis): mean_fc_nir = torch.mean(fc_nir, 0) mean_fc_vis = torch.mean(fc_vis, 0) loss_mmd = F.mse_loss(mean_fc_nir, mean_fc_vis) return loss_mmd def adjust_learning_rate(lr, step, optimizer, epoch): scale = 0.457305051927326 lr = lr * (scale ** (epoch // step)) print('lr: {}'.format(lr)) if (epoch != 0) & (epoch % step == 0): print('Change lr') for param_group in optimizer.param_groups: param_group['lr'] = param_group['lr'] * scale def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res