import os import sys import torch import gradio as gr from PIL import Image import numpy as np from omegaconf import OmegaConf import subprocess from tqdm import tqdm import requests # Assuming spaces is a valid module import spaces def download_file(url, filename): response = requests.get(url, stream=True) total_size = int(response.headers.get('content-length', 0)) block_size = 1024 with open(filename, 'wb') as file, tqdm( desc=filename, total=total_size, unit='iB', unit_scale=True, unit_divisor=1024, ) as progress_bar: for data in response.iter_content(block_size): size = file.write(data) progress_bar.update(size) def setup_environment(): if not os.path.exists("CCSR"): print("Cloning CCSR repository...") subprocess.run(["git", "clone", "-b", "dev", "https://github.com/camenduru/CCSR.git"]) os.chdir("CCSR") sys.path.append(os.getcwd()) os.makedirs("weights", exist_ok=True) if not os.path.exists("weights/real-world_ccsr.ckpt"): print("Downloading model checkpoint...") download_file( "https://huggingface.co/camenduru/CCSR/resolve/main/real-world_ccsr.ckpt", "weights/real-world_ccsr.ckpt" ) else: print("Model checkpoint already exists. Skipping download.") setup_environment() # Importing from the CCSR folder from CCSR.ldm.xformers_state import disable_xformers from CCSR.model.q_sampler import SpacedSampler from CCSR.model.ccsr_stage1 import ControlLDM from CCSR.utils.common import instantiate_from_config, load_state_dict config = OmegaConf.load("configs/model/ccsr_stage2.yaml") model = instantiate_from_config(config) ckpt = torch.load("weights/real-world_ccsr.ckpt", map_location="cpu") load_state_dict(model, ckpt, strict=True) model.freeze() model.to("cuda") @spaces.GPU # Decorate the inference function with @spaces.GPU @torch.no_grad() def process(image, steps, t_max, t_min, color_fix_type): image = Image.open(image).convert("RGB") image = image.resize((256, 256), Image.LANCZOS) image = np.array(image) sampler = SpacedSampler(model, var_type="fixed_small") control = torch.tensor(np.stack([image]) / 255.0, dtype=torch.float32, device=model.device).clamp_(0, 1) control = einops.rearrange(control, "n h w c -> n c h w").contiguous() model.control_scales = [1.0] * 13 height, width = control.size(-2), control.size(-1) shape = (1, 4, height // 8, width // 8) x_T = torch.randn(shape, device=model.device, dtype=torch.float32) samples = sampler.sample_ccsr( steps=steps, t_max=t_max, t_min=t_min, shape=shape, cond_img=control, positive_prompt="", negative_prompt="", x_T=x_T, cfg_scale=1.0, color_fix_type=color_fix_type ) x_samples = samples.clamp(0, 1) x_samples = (einops.rearrange(x_samples, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8) return Image.fromarray(x_samples[0]) interface = gr.Interface( fn=process, inputs=[ gr.Image(type="filepath"), gr.Slider(minimum=1, maximum=100, step=1, value=45), gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.6667), gr.Slider(minimum=0, maximum=1, step=0.0001, value=0.3333), gr.Dropdown(choices=["adain", "wavelet", "none"], value="adain"), ], outputs=gr.Image(type="pil"), title="CCSR: Continuous Contrastive Super-Resolution", ) interface.launch()