import gradio as gr import torch from sahi.prediction import ObjectPrediction from sahi.utils.cv import visualize_object_predictions, read_image from ultralyticsplus import YOLO # Images torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/20.jpeg', '20.jpeg') torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/30.jpeg', '30.jpeg') torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/17.jpeg', '17.jpeg') def yolov8_inference( image: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = None, image_size: gr.inputs.Slider = 224, conf_threshold: gr.inputs.Slider = 0.25, iou_threshold: gr.inputs.Slider = 0.45, ): """ YOLOv8 inference function Args: image: Input image model_path: Path to the model image_size: Image size conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ model = YOLO(model_path) model.conf = conf_threshold model.iou = iou_threshold results = model.predict(image, imgsz=image_size, )#return_outputs=True) print("Outputs", results[0].numpy()) # data = np.array(results[0].numpy(), dtype=np.float32) print("Boxexes",results[0].boxes.boxes) object_prediction_list = [] outputs = results[0].boxes.boxes.numpy() if len(outputs)!=0: for pred in outputs: print(type(pred),pred) x1, y1, x2, y2 = ( int(pred[0]), int(pred[1]), int(pred[2]), int(pred[3]), ) bbox = [x1, y1, x2, y2] score = pred[4] category_name = model.model.names[int(pred[5])] category_id = pred[5] object_prediction = ObjectPrediction( bbox=bbox, category_id=int(category_id), score=score, category_name=category_name, ) object_prediction_list.append(object_prediction) image = read_image(image) output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list) return output_image['image'] inputs = [ gr.inputs.Image(type="filepath", label="Input Image"), gr.inputs.Dropdown(["owaiskha9654/yolov8-custom_objects", "owaiskha9654/yolov8-custom_objects"], default="owaiskha9654/yolov8-custom_objects", label="Model"), gr.inputs.Slider(minimum=224, maximum=224, default=224, step=32, label="Image Size"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.outputs.Image(type="filepath", label="Output Image") title = "Custom YOLOv8: Trained on Industrial Equipments predictions" examples = [['20.jpeg', 'owaiskha9654/yolov8-custom_objects', 224, 0.25, 0.45], ['30.jpeg', 'owaiskha9654/yolov8-custom_objects', 224, 0.25, 0.45],]# ['17.jpeg', 'owaiskha9654/yolov8-custom_objects', 1280, 0.25, 0.45]] demo_app = gr.Interface( fn=yolov8_inference, inputs=inputs, outputs=outputs, title=title, examples=examples, cache_examples=False, theme='huggingface', ) demo_app.launch(debug=True, enable_queue=False)