print("NLTK") import nltk nltk.download('punkt') import gradio as gr import numpy as np import whisper import scipy.io.wavfile #StyleTTS2 imports import torch torch.manual_seed(0) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True import random random.seed(0) np.random.seed(0) # load packages import yaml from munch import Munch import torch from torch import nn import torch.nn.functional as F import torchaudio import librosa from nltk.tokenize import word_tokenize from models import * from utils import * from text_utils import TextCleaner textclenaer = TextCleaner() import phonemizer # Global values sample_rate_value=24000 original_voice_path = "ref_voice.wav" to_mel = torchaudio.transforms.MelSpectrogram( n_mels=80, n_fft=2048, win_length=1200, hop_length=300) mean, std = -4, 4 def length_to_mask(lengths): mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) mask = torch.gt(mask+1, lengths.unsqueeze(1)) return mask def preprocess(wave): wave_tensor = torch.from_numpy(wave).float() mel_tensor = to_mel(wave_tensor) mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std return mel_tensor def compute_style(path): wave, sr = librosa.load(path, sr=24000) audio, index = librosa.effects.trim(wave, top_db=30) if sr != 24000: audio = librosa.resample(audio, sr, 24000) mel_tensor = preprocess(audio).to(device) with torch.no_grad(): ref_s = model.style_encoder(mel_tensor.unsqueeze(1)) ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1)) return torch.cat([ref_s, ref_p], dim=1) device = 'cuda' if torch.cuda.is_available() else 'cpu' # load phonemizer #phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt'))) global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True) config = yaml.safe_load(open("Models/LibriTTS/config.yml")) # load pretrained ASR model ASR_config = config.get('ASR_config', False) ASR_path = config.get('ASR_path', False) text_aligner = load_ASR_models(ASR_path, ASR_config) # load pretrained F0 model F0_path = config.get('F0_path', False) pitch_extractor = load_F0_models(F0_path) # load BERT model from Utils.PLBERT.util import load_plbert BERT_path = config.get('PLBERT_dir', False) plbert = load_plbert(BERT_path) model_params = recursive_munch(config['model_params']) model = build_model(model_params, text_aligner, pitch_extractor, plbert) _ = [model[key].eval() for key in model] _ = [model[key].to(device) for key in model] params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu') params = params_whole['net'] for key in model: if key in params: print('%s loaded' % key) try: model[key].load_state_dict(params[key]) except: from collections import OrderedDict state_dict = params[key] new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] # remove `module.` new_state_dict[name] = v # load params model[key].load_state_dict(new_state_dict, strict=False) # except: # _load(params[key], model[key]) _ = [model[key].eval() for key in model] from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule sampler = DiffusionSampler( model.diffusion.diffusion, sampler=ADPM2Sampler(), sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters clamp=False ) def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1): text = text.strip() ps = global_phonemizer.phonemize([text]) #ps = phonemizer([text], lang='en_us') ps = word_tokenize(ps[0]) ps = ' '.join(ps) tokens = textclenaer(ps) tokens.insert(0, 0) tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) with torch.no_grad(): input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) text_mask = length_to_mask(input_lengths).to(device) t_en = model.text_encoder(tokens, input_lengths, text_mask) bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) d_en = model.bert_encoder(bert_dur).transpose(-1, -2) s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device), embedding=bert_dur, embedding_scale=embedding_scale, features=ref_s, # reference from the same speaker as the embedding num_steps=diffusion_steps).squeeze(1) s = s_pred[:, 128:] ref = s_pred[:, :128] ref = alpha * ref + (1 - alpha) * ref_s[:, :128] s = beta * s + (1 - beta) * ref_s[:, 128:] d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) x, _ = model.predictor.lstm(d) duration = model.predictor.duration_proj(x) duration = torch.sigmoid(duration).sum(axis=-1) pred_dur = torch.round(duration.squeeze()).clamp(min=1) pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) c_frame = 0 for i in range(pred_aln_trg.size(0)): pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 c_frame += int(pred_dur[i].data) # encode prosody en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) if model_params.decoder.type == "hifigan": asr_new = torch.zeros_like(en) asr_new[:, :, 0] = en[:, :, 0] asr_new[:, :, 1:] = en[:, :, 0:-1] en = asr_new F0_pred, N_pred = model.predictor.F0Ntrain(en, s) asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) if model_params.decoder.type == "hifigan": asr_new = torch.zeros_like(asr) asr_new[:, :, 0] = asr[:, :, 0] asr_new[:, :, 1:] = asr[:, :, 0:-1] asr = asr_new out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0)) return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later def transcribe(audio): transcribed_text = "" try: whisper_model = whisper.load_model("base") result = whisper_model.transcribe(audio) transcribed_text = result["text"] except Exception as exc: print(exc) transcribed_text = "An error occured. Please try again." print(transcribed_text) # ref_s = compute_style(original_voice_path) # run locally ref_s = compute_style(audio) # run on HF wav = inference(transcribed_text, ref_s, alpha=0.1, beta=0.5, diffusion_steps=10, embedding_scale=1) scaled = np.int16(wav / np.max(np.abs(wav)) * 32767) return (sample_rate_value, scaled) def record_speaker(audio): sr, voice = audio scaled = np.int16(voice / np.max(np.abs(voice)) * 32767) scipy.io.wavfile.write(original_voice_path, sr, scaled) with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown(""" # AccentCoach: Transform Any Accent into American Accent. **This is an educational app designed to transform the speech of a non-native English speaker into a native American accent.** **The tool aims to coach learners in accent reduction and pronunciation improvement. It performs much better on longer speech.** **The code is based on style diffusion and adversarial training with LSLMs outlined in StyleTTS2 paper.** **It is strongly advised to duplicate this space and run it on a powerful GPU. Inference time can be reduced to less than a second when utilizing an Nvidia 3090.** """) # with gr.Accordion("First-Time Users (Click Here):", open=False): # gr.Markdown(""" # **Record the reference voice:** Kindly capture your voice as you read the provided # text. Please ensure that you have granted microphone access in your browser settings. # > I must not fear. Fear is the mind-killer. Fear is the little-death that brings total obliteration. # I will face my fear. I will permit it to pass over me and through me. And when it has gone past I # will turn the inner eye to see its path. Where the fear has gone there will be nothing. Only I will remain. # Ensure clarity in your pronunciation, as the quality of this recording # significantly influences the future results. Once done please click "Save". # If the quality of the native voice is not satisfactory, you can come back and # re-record your voice here again. # You can also upload your voice or someone else's voice. # """) # speaker_voice = gr.Audio(sources=["microphone", "upload"], format="wav", label="Record reference voice:",show_download_button="True") # ref_btn = gr.Button("Save") # ref_btn.click(record_speaker, inputs= speaker_voice, outputs=None) with gr.Column(): gr.Markdown(""" *Initiate the recording process by selecting the **Record** button. Speak Clearly and ensure a noise-free environment.* """) inp = gr.Audio(sources=["microphone", "upload"], format="wav", type="filepath", label="Original accent:",show_download_button="True") gr.Markdown(""" *Press the **Run** button to listen to your native accent:* """) out = gr.Audio(label="Native accent:", autoplay="True", show_download_button="True") btn = gr.Button("Run") btn.click(transcribe, inputs=inp, outputs=out) gr.Examples( examples=[ ["https://dl.sndup.net/9y9x/Albert-Einstein.wav",], ["https://dl.sndup.net/p6gz/Arnold-Schwarzenegger.wav" ,], ], inputs=inp, outputs=out, fn=transcribe, cache_examples=True, ) gr.Markdown( """ ## Remarks: - **The optimal performance of the model is achieved when running on a GPU with a minimum of 8GB of VRAM. However, due to budget constraints, the author is currently limited to utilizing the free CPU on HF, resulting in slower inference speeds.** - **Longer sentences yield a more naturally flowing result. Brief expressions like "Hi" or "How are you" may yield suboptimal outcomes.** - **The model might occasionally produce noise or generate random speech. Consider re-recording or re-running for enhanced clarity and accuracy.** - **By utilizing this application, you provide consent for your voice to be synthesized by pre-trained models.** - **If encountering an error, please try re-running or reloading the page.** - **This app primarily functions as an educational tool for English learners. The author does not endorse or support any malicious or misuse of this application.** - **The user acknowledges and agrees that the use of the software is at the user's sole risk.** """) if __name__ == "__main__": demo.launch()