print("NLTK")
import nltk
nltk.download('punkt')
import gradio as gr
import numpy as np
import whisper
import scipy.io.wavfile
#StyleTTS2 imports
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import random
random.seed(0)
np.random.seed(0)
# load packages
import yaml
from munch import Munch
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
from nltk.tokenize import word_tokenize
from models import *
from utils import *
from text_utils import TextCleaner
textclenaer = TextCleaner()
import phonemizer
# Global values
sample_rate_value=24000
original_voice_path = "ref_voice.wav"
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def compute_style(path):
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# load phonemizer
#phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
config = yaml.safe_load(open("Models/LibriTTS/config.yml"))
# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)
# load BERT model
from Utils.PLBERT.util import load_plbert
BERT_path = config.get('PLBERT_dir', False)
plbert = load_plbert(BERT_path)
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]
params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu')
params = params_whole['net']
for key in model:
if key in params:
print('%s loaded' % key)
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
model[key].load_state_dict(new_state_dict, strict=False)
# except:
# _load(params[key], model[key])
_ = [model[key].eval() for key in model]
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
sampler = DiffusionSampler(
model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
clamp=False
)
def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1):
text = text.strip()
ps = global_phonemizer.phonemize([text])
#ps = phonemizer([text], lang='en_us')
ps = word_tokenize(ps[0])
ps = ' '.join(ps)
tokens = textclenaer(ps)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
d = model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later
def transcribe(audio):
transcribed_text = ""
try:
whisper_model = whisper.load_model("base")
result = whisper_model.transcribe(audio)
transcribed_text = result["text"]
except Exception as exc:
print(exc)
transcribed_text = "An error occured. Please try again."
print(transcribed_text)
# ref_s = compute_style(original_voice_path) # run locally
ref_s = compute_style(audio) # run on HF
wav = inference(transcribed_text, ref_s, alpha=0.1, beta=0.5, diffusion_steps=10, embedding_scale=1)
scaled = np.int16(wav / np.max(np.abs(wav)) * 32767)
return (sample_rate_value, scaled)
def record_speaker(audio):
sr, voice = audio
scaled = np.int16(voice / np.max(np.abs(voice)) * 32767)
scipy.io.wavfile.write(original_voice_path, sr, scaled)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(""" # AccentCoach: Transform Any Accent into American Accent.
**This is an educational app designed to transform the speech of a non-native English speaker into a native American accent.**
**The tool aims to coach learners in accent reduction and pronunciation improvement. It performs much better on longer speech.**
**The code is based on style diffusion and adversarial training with LSLMs outlined in StyleTTS2 paper.**
**It is strongly advised to duplicate this space and run it on a powerful GPU. Inference time can be reduced to less than a second when utilizing an Nvidia 3090.**
""")
# with gr.Accordion("First-Time Users (Click Here):", open=False):
# gr.Markdown("""
# **Record the reference voice:** Kindly capture your voice as you read the provided
# text. Please ensure that you have granted microphone access in your browser settings.
# > I must not fear. Fear is the mind-killer. Fear is the little-death that brings total obliteration.
# I will face my fear. I will permit it to pass over me and through me. And when it has gone past I
# will turn the inner eye to see its path. Where the fear has gone there will be nothing. Only I will remain.
# Ensure clarity in your pronunciation, as the quality of this recording
# significantly influences the future results. Once done please click "Save".
# If the quality of the native voice is not satisfactory, you can come back and
# re-record your voice here again.
# You can also upload your voice or someone else's voice.
# """)
# speaker_voice = gr.Audio(sources=["microphone", "upload"], format="wav", label="Record reference voice:",show_download_button="True")
# ref_btn = gr.Button("Save")
# ref_btn.click(record_speaker, inputs= speaker_voice, outputs=None)
with gr.Column():
gr.Markdown("""
*Initiate the recording process by selecting the **Record** button. Speak Clearly and ensure a noise-free environment.*
""")
inp = gr.Audio(sources=["microphone", "upload"], format="wav", type="filepath",
label="Original accent:",show_download_button="True")
gr.Markdown("""
*Press the **Run** button to listen to your native accent:*
""")
out = gr.Audio(label="Native accent:", autoplay="True", show_download_button="True")
btn = gr.Button("Run")
btn.click(transcribe, inputs=inp, outputs=out)
gr.Examples(
examples=[
["https://dl.sndup.net/9y9x/Albert-Einstein.wav",],
["https://dl.sndup.net/p6gz/Arnold-Schwarzenegger.wav" ,],
],
inputs=inp,
outputs=out,
fn=transcribe,
cache_examples=True,
)
gr.Markdown(
"""
## Remarks:
- **The optimal performance of the model is achieved when running on a GPU with a
minimum of 8GB of VRAM. However, due to budget constraints, the author is currently
limited to utilizing the free CPU on HF, resulting in slower inference speeds.**
- **Longer sentences yield a more naturally flowing result.
Brief expressions like "Hi" or "How are you" may yield suboptimal outcomes.**
- **The model might occasionally produce noise or generate random speech.
Consider re-recording or re-running for enhanced clarity and accuracy.**
- **By utilizing this application, you provide consent for your voice to
be synthesized by pre-trained models.**
- **If encountering an error, please try re-running or reloading the page.**
- **This app primarily functions as an educational tool for English learners.
The author does not endorse or support any malicious or misuse of this application.**
- **The user acknowledges and agrees that the use of the software is at the user's sole risk.**
""")
if __name__ == "__main__":
demo.launch()