import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_NAME = "oskaralf/model_merged" model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype="auto", device_map="auto") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) def generate_response(prompt, max_length=128, temperature=0.7, top_p=0.9): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_length=max_length, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response def interactive_app(): with gr.Blocks() as app: gr.Markdown("# Coding Task Generator") gr.Markdown("Generate coding tasks by entering a prompt below.") prompt = gr.Textbox(label="Enter your prompt:", placeholder="e.g., Create a Python task involving recursion.") max_length = gr.Slider(label="Max Length", minimum=16, maximum=512, value=128, step=16) temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1) top_p = gr.Slider(label="Top-p Sampling", minimum=0.1, maximum=1.0, value=0.9, step=0.1) generate_button = gr.Button("Generate Task") output = gr.Textbox(label="Generated Task", lines=10) generate_button.click( generate_response, inputs=[prompt, max_length, temperature, top_p], outputs=output ) return app if __name__ == "__main__": interactive_app().launch()