import streamlit as st from flowise import Flowise, PredictionData import json # Flowise app base url base_url = "https://startrz-devi.hf.space/api/v1/prediction" # Chatflow/Agentflow ID flow_id = "e54adffc-ae77-42e5-9fc0-c4584e081093" # Show title and description. st.title("Devi Research") st.write( "This is a simple chatbot that uses Flowise Python SDK" ) # Create a Flowise client. client = Flowise(base_url=base_url) # Create a session state variable to store the chat messages. This ensures that the # messages persist across reruns. if "messages" not in st.session_state: st.session_state.messages = [] # Display the existing chat messages via `st.chat_message`. for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) def generate_response(prompt: str): print('generating response') completion = client.create_prediction( PredictionData( chatflowId=flow_id, question=prompt, streaming=True ) ) for chunk in completion: print(chunk) parsed_chunk = json.loads(chunk) if (parsed_chunk['event'] == 'token' and parsed_chunk['data'] != ''): yield str(parsed_chunk['data']) # Create a chat input field to allow the user to enter a message. This will display # automatically at the bottom of the page. if prompt := st.chat_input("What is up?"): # Store and display the current prompt. st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) # Stream the response to the chat using `st.write_stream`, then store it in # session state. with st.chat_message("assistant"): response = generate_response(prompt) full_response = st.write_stream(response) st.session_state.messages.append({"role": "assistant", "content": full_response})