# toxic.py import streamlit as st import numpy as np import pandas as pd import time import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification # Ensure your model and tokenizer paths are correct and accessible by the Streamlit app. # Since you're importing this into another file, relative or absolute paths might need to be updated accordingly. model_t_checkpoint = 'cointegrated/rubert-tiny-toxicity' tokenizer_t = AutoTokenizer.from_pretrained(model_t_checkpoint) model_t = AutoModelForSequenceClassification.from_pretrained(model_t_checkpoint) def text2toxicity(text, aggregate=True): with torch.no_grad(): inputs = tokenizer_t(text, return_tensors='pt', truncation=True, padding=True).to('cpu') proba = torch.sigmoid(model_t(**inputs).logits).cpu().numpy() if isinstance(text, str): proba = proba[0] if aggregate: return 1 - proba.T[0] * (1 - proba.T[-1]) return proba def toxicity_page(): st.title(""" Определим токсичный комментарий или нет """) user_text_input = st.text_area('Введите ваш отзыв здесь:') if st.button('Предсказать'): start_time = time.time() proba = text2toxicity(user_text_input, True) end_time = time.time() prediction_time = end_time - start_time if proba >= 0.5: st.write(f'Степень токсичности комментария: {round(proba, 2)} – комментарий токсичный.') else: st.write(f'Степень токсичности комментария: {round(proba, 2)} – комментарий не токсичный.') st.write(f'Время предсказания: {prediction_time:.4f} секунд')