import numpy as np import torch from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN def carga_modelo(model_name='ceyda/butterfly_croppe_uniq1K_512',model_version=None): gan = LightweightGAN.from_pretrained(model_name, vesion=model_version) gan.eval() return gan def genera(gan, batch_size=1): with torch.no_grad(): ims = gan.G(torch.randn(batch_size, gan.latent_dim).clamp_(0.0,1.0)*255) ims = ims.permute(0,2,3,1).deatch().cpu().numpy().asttype(np.uint8) return ims