import joblib import os import gradio as gr from huggingface_hub import hf_hub_download file_path = hf_hub_download("osanseviero/wine-quality", "sklearn_model.joblib", use_auth_token=os.environ['TOKEN']) model = joblib.load(file_path) def predict(data): return model.predict(data.to_numpy()) headers = [ "fixed acidity", "volatile acidity", "citric acid", "residual sugar", "chlorides", "free sulfur dioxide", "total sulfur dioxide", "density", "pH", "sulphates", "alcohol", ] default = [ [7.4, 0.7, 0, 1.9, 0.076, 11, 34, 0.9978, 3.51, 0.56, 9.4], [7.8, 0.88, 0, 2.6, 0.098, 25, 67, 0.9968, 3.2, 0.68, 9.8], [7.8, 0.76, 0.04, 2.3, 0.092, 15, 54, 0.997, 3.26, 0.65, 9.8], ] iface = gr.Interface( predict, title="Wine Quality predictor with SKLearn", inputs=gr.inputs.Dataframe( headers=headers, default=default, ), outputs="numpy", description="Learn how to create demos of private models at https://huggingface.co/spaces/osanseviero/tips-and-tricks" ) iface.launch()