from flask import Flask, render_template, request import cv2 import numpy as np from tensorflow.keras.models import load_model app = Flask(__name__) class ShelfClassifier: def __init__(self, model_path): self.model = load_model(model_path) def classify_image(self, image): image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) resized_image = cv2.resize(image_rgb, (224, 224)) resized_image = resized_image.astype('float32') / 255 resized_image = np.expand_dims(resized_image, axis=0) prediction = self.model.predict(resized_image) class_index = np.argmax(prediction) class_label = "Disorganized or Empty" if class_index == 1 else "Organized" return class_label @app.route('/', methods=['GET', 'POST']) def upload_image(): if request.method == 'POST': # Check if the post request has the file part if 'file' not in request.files: return render_template('index.html', message='No file part') file = request.files['file'] # If user does not select file, browser also # submit an empty part without filename if file.filename == '': return render_template('index.html', message='No selected file') if file: # Read uploaded image image = cv2.imdecode(np.fromstring(file.read(), np.uint8), cv2.IMREAD_COLOR) # Initialize ShelfClassifier with the model classifier = ShelfClassifier('saved_model.h5') # Perform classification class_label = classifier.classify_image(image) # Draw bounding box if shelf is disorganized or empty if class_label == "Disorganized or Empty": # Draw red rectangle cv2.rectangle(image, (0, 0), (image.shape[1], image.shape[0]), (255, 0, 0), 2) # Save image with bounding box cv2.imwrite('result.jpg', image) return render_template('result.html', class_label=class_label) return render_template('index.html') if __name__ == '__main__': app.run(debug=True)