# -*- coding: utf-8 -*- import argparse import re import os import streamlit as st import random import numpy as np import torch from transformers import AutoTokenizer, AutoModelForCausalLM import tokenizers #os.environ["TOKENIZERS_PARALLELISM"] = "false" random.seed(None) suggested_text_list = ['מטרת הבריאה'] @st.cache(hash_funcs={tokenizers.Tokenizer: id, tokenizers.AddedToken: id}) def load_model(model_name): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True) return model, tokenizer def extend(input_text, max_size=20, top_k=50, top_p=0.95): if len(input_text) == 0: input_text = "" encoded_prompt = tokenizer.encode( input_text, add_special_tokens=False, return_tensors="pt") encoded_prompt = encoded_prompt.to(device) if encoded_prompt.size()[-1] == 0: input_ids = None else: input_ids = encoded_prompt do_sample = False if top_k ==0 and top_p == 1.0 else True output_sequences = model.generate( input_ids=input_ids, max_length=max_size + len(encoded_prompt[0]), top_k=top_k, top_p=top_p, do_sample=do_sample, repetition_penalty=25.0, num_return_sequences=1) # Remove the batch dimension when returning multiple sequences if len(output_sequences.shape) > 2: output_sequences.squeeze_() generated_sequences = [] for generated_sequence_idx, generated_sequence in enumerate(output_sequences): generated_sequence = generated_sequence.tolist() # Decode text text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True) # Remove all text after the stop token text = text[: text.find(stop_token) if stop_token else None] # Remove all text after 3 newlines text = text[: text.find(new_lines) if new_lines else None] # Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing total_sequence = ( input_text + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :] ) generated_sequences.append(total_sequence) parsed_text = total_sequence.replace("<|startoftext|>", "").replace("\r","").replace("\n\n", "\n") if len(parsed_text) == 0: parsed_text = "שגיאה" return parsed_text if __name__ == "__main__": st.title("Light generator") pre_model_path = "orendar/light_generator" model, tokenizer = load_model(pre_model_path) stop_token = "<|endoftext|>" new_lines = "\n\n\n" np.random.seed(None) random_seed = np.random.randint(10000,size=1) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count() torch.manual_seed(random_seed) if n_gpu > 0: torch.cuda.manual_seed_all(random_seed) model.to(device) text_area = st.text_area("Enter the first few words (or leave blank), tap on \"Generate Text\" below. Tapping again may produce a different result.", 'מטרת הבריאה') st.sidebar.subheader("Configurable parameters") max_len = st.sidebar.slider("Max-Length", 0, 256, 70, help="The maximum length of the sequence to be generated.") top_k = st.sidebar.slider("Top-K", 0, 100, 0, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.") top_p = st.sidebar.slider("Top-P", 0.0, 1.0, 1.0, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.") if st.button("Generate Text"): with st.spinner(text="Generating results..."): st.subheader("Result") print(f"device:{device}, n_gpu:{n_gpu}, random_seed:{random_seed}, maxlen:{max_len}, top_k:{top_k}, top_p:{top_p}") if len(text_area.strip()) == 0: text_area = random.choice(suggested_text_list) result = extend(input_text=text_area, max_size=int(max_len), top_k=int(top_k), top_p=float(top_p)) #
st.markdown(f"

{result}

", unsafe_allow_html=True) print(f"\"{result}\"") st.markdown( """This model was trained on archive materials.""" ) st.markdown(" ", unsafe_allow_html=True)