import gradio as gr from transformers import AutoModelForCausalLM from PIL import Image from huggingface_hub import pipeline # Load the SquanchNastyAI model from Hugging Face Spaces model = AutoModelForCausalLM.from_pretrained("or4cl3ai/SquanchNastyAI") # Initialize the pipeline for image generation image_pipeline = pipeline("image-generation", model="google/vit-base-patch16-384") # Define a function to generate a text response to a prompt def generate_response(prompt): return model.generate(prompt, max_length=1024)[0] # Define a function to generate an image from a prompt def generate_image(prompt): image = image_pipeline(prompt) return image # Create a Gradio interface for the SquanchNastyAI model interface = gr.Interface( fn=generate_response, inputs="text", outputs=["text", "image"], components={ "text": gr.Text(), "image": gr.Image(), }, layout="row", ) # Launch the Gradio interface interface.launch()