LLM_MODEL_ARCHS = { "stablelm_epoch": "πŸ”΄ StableLM-Epoch", "stablelm_alpha": "πŸ”΄ StableLM-Alpha", "mixformer-sequential": "πŸ§‘β€πŸ’» Phi Ο†", "RefinedWebModel": "πŸ¦… Falcon", "gpt_bigcode": "⭐ StarCoder", "RefinedWeb": "πŸ¦… Falcon", "baichuan": "🌊 Baichuan 百川", # river "internlm": "πŸ§‘β€πŸŽ“ InternLM δΉ¦η”Ÿ", # scholar "mistral": "Ⓜ️ Mistral", "codegen": "♾️ CodeGen", "chatglm": "πŸ’¬ ChatGLM", "falcon": "πŸ¦… Falcon", "bloom": "🌸 Bloom", "llama": "πŸ¦™ LLaMA", "rwkv": "πŸ¦β€β¬› RWKV", "mpt": "🧱 MPT", "Yi": "πŸ«‚ Yi δΊΊ" , # people # suggest something "gpt_neox": "GPT-NeoX", "gpt_neo": "GPT-Neo", "gpt2": "GPT-2", "gptj": "GPT-J", "xglm": "XGLM", "bart": "BART", "opt": "OPT", } def model_hyperlink(link, model_name): return f'{model_name}' def process_arch(model_arch): if model_arch in LLM_MODEL_ARCHS: return LLM_MODEL_ARCHS[model_arch] else: return model_arch def process_score(score, quantization): if quantization != "None": return f"{score:.2f}*" else: return f"{score:.2f} " # def change_tab(query_param): # query_param = query_param.replace("'", '"') # query_param = json.loads(query_param) # if isinstance(query_param, dict) and "tab" in query_param and query_param["tab"] == "plot": # return gr.Tabs.update(selected=1) # else: # return gr.Tabs.update(selected=0)