import os import time from huggingface_hub import create_repo, whoami import gradio as gr from config_store import ( get_inference_config, get_onnxruntime_config, get_openvino_config, get_pytorch_config, get_process_config, ) from optimum_benchmark.backends.openvino.utils import TASKS_TO_OVMODEL from optimum_benchmark.backends.transformers_utils import TASKS_TO_MODEL_LOADERS from optimum_benchmark.backends.onnxruntime.utils import TASKS_TO_ORTMODELS from optimum_benchmark.backends.ipex.utils import TASKS_TO_IPEXMODEL from optimum_benchmark import ( BenchmarkConfig, PyTorchConfig, OVConfig, ORTConfig, IPEXConfig, ProcessConfig, InferenceConfig, Benchmark, ) from optimum_benchmark.logging_utils import setup_logging os.environ["LOG_TO_FILE"] = "0" os.environ["LOG_LEVEL"] = "INFO" setup_logging(level="INFO", prefix="MAIN-PROCESS") DEVICE = "cpu" BACKENDS = ["pytorch", "onnxruntime", "openvino", "ipex"] CHOSEN_MODELS = ["bert-base-uncased", "gpt2"] CHOSEN_TASKS = ( set(TASKS_TO_OVMODEL.keys()) & set(TASKS_TO_ORTMODELS.keys()) & set(TASKS_TO_IPEXMODEL.keys()) & set(TASKS_TO_MODEL_LOADERS.keys()) ) def run_benchmark(kwargs, oauth_token: gr.OAuthToken): if oauth_token.token is None: return "You must be logged in to use this space" username = whoami(oauth_token.token)["name"] create_repo( f"{username}/benchmarks", token=oauth_token.token, repo_type="dataset", exist_ok=True, ) configs = { "process": {}, "inference": {}, "onnxruntime": {}, "openvino": {}, "pytorch": {}, "ipex": {}, } for key, value in kwargs.items(): if key.label == "model": model = value elif key.label == "task": task = value elif "." in key.label: backend, argument = key.label.split(".") configs[backend][argument] = value else: continue process_config = ProcessConfig(**configs.pop("process")) inference_config = InferenceConfig(**configs.pop("inference")) configs["onnxruntime"] = ORTConfig( task=task, model=model, device=DEVICE, **configs["onnxruntime"], ) configs["openvino"] = OVConfig( task=task, model=model, device=DEVICE, **configs["openvino"], ) configs["pytorch"] = PyTorchConfig( task=task, model=model, device=DEVICE, **configs["pytorch"], ) configs["ipex"] = IPEXConfig( task=task, model=model, device=DEVICE, **configs["ipex"], ) for backend in configs: benchmark_name = ( f"{model}-{task}-{backend}-{time.strftime('%Y-%m-%d-%H-%M-%S')}" ) benchmark_config = BenchmarkConfig( name=benchmark_name, launcher=process_config, scenario=inference_config, backend=configs[backend], ) benchmark_report = Benchmark.run(benchmark_config) benchmark = Benchmark(config=benchmark_config, report=benchmark_report) benchmark.push_to_hub( repo_id=f"{username}/benchmarks", subfolder=benchmark_name, token=oauth_token.token, ) return f"🚀 Benchmark {benchmark_name} has been pushed to {username}/benchmarks" with gr.Blocks() as demo: # add login button gr.LoginButton(min_width=250) # add image gr.Markdown( """""" ) # title text gr.Markdown("

🤗 Optimum-Benchmark Interface 🏋️

") # explanation text gr.HTML( "

" "Zero code Gradio interface of " "" "Optimum-Benchmark" "" "
" "

" ) model = gr.Dropdown( label="model", choices=CHOSEN_MODELS, value="bert-base-uncased", info="Model to run the benchmark on.", ) task = gr.Dropdown( label="task", choices=CHOSEN_TASKS, value="feature-extraction", info="Task to run the benchmark on.", ) with gr.Row(): with gr.Accordion(label="Process Config", open=False, visible=True): process_config = get_process_config() with gr.Row(): with gr.Accordion(label="PyTorch Config", open=True, visible=True): pytorch_config = get_pytorch_config() with gr.Accordion(label="OpenVINO Config", open=True, visible=True): openvino_config = get_openvino_config() with gr.Accordion(label="OnnxRuntime Config", open=True, visible=True): onnxruntime_config = get_onnxruntime_config() with gr.Row(): with gr.Accordion(label="Scenario Config", open=False, visible=True): inference_config = get_inference_config() button = gr.Button(value="Run Benchmark", variant="primary") html_output = gr.HTML() button.click( fn=run_benchmark, inputs={ task, model, *process_config.values(), *inference_config.values(), *onnxruntime_config.values(), *openvino_config.values(), *pytorch_config.values(), }, outputs=[html_output], concurrency_limit=1, ) demo.queue(max_size=10).launch()