import os import time import traceback from typing import Optional from config_store import ( get_process_config, get_inference_config, get_openvino_config, get_pytorch_config, ) import gradio as gr from huggingface_hub import whoami, login, logout from gradio_huggingfacehub_search import HuggingfaceHubSearch from optimum_benchmark.launchers.device_isolation_utils import * # noqa from optimum_benchmark.backends.openvino.utils import TASKS_TO_OVMODEL from optimum_benchmark.backends.transformers_utils import TASKS_TO_MODEL_LOADERS from optimum_benchmark import ( Benchmark, BenchmarkConfig, InferenceConfig, ProcessConfig, PyTorchConfig, OVConfig, ) from optimum_benchmark.logging_utils import setup_logging from optimum_benchmark.task_utils import infer_task_from_model_name_or_path DEVICE = "cpu" LAUNCHER = "process" SCENARIO = "inference" BACKENDS = ["pytorch", "openvino"] BENCHMARKS_HF_TOKEN = os.getenv("BENCHMARKS_HF_TOKEN") BENCHMARKS_REPO_ID = "optimum-benchmark/OpenVINO-Benchmarks" TASKS = set(TASKS_TO_OVMODEL.keys()) & set(TASKS_TO_MODEL_LOADERS.keys()) def parse_configs(inputs): configs = {"process": {}, "inference": {}, "pytorch": {}, "openvino": {}} for key, value in inputs.items(): if key.label == "model": model = value elif key.label == "task": task = value elif "." in key.label: backend, argument = key.label.split(".") configs[backend][argument] = value else: continue for key in configs.keys(): for k, v in configs[key].items(): if k in ["input_shapes", "generate_kwargs", "numactl_kwargs"]: configs[key][k] = eval(v) configs["process"] = ProcessConfig(**configs.pop("process")) configs["inference"] = InferenceConfig(**configs.pop("inference")) configs["pytorch"] = PyTorchConfig( task=task, model=model, device=DEVICE, **configs["pytorch"] ) configs["openvino"] = OVConfig( task=task, model=model, device=DEVICE, **configs["openvino"] ) return configs def run_benchmark(inputs, oauth_token: Optional[gr.OAuthToken]): if oauth_token.token is None or oauth_token.token == "": raise gr.Error("Please login to be able to run the benchmark.") timestamp = time.strftime("%Y-%m-%d-%H-%M-%S") use_name = whoami(oauth_token.token)["name"] folder = f"{use_name}/{timestamp}" gr.Info(f"📩 Benchmark will be saved under {BENCHMARKS_REPO_ID}/{folder}") outputs = {backend: "Running..." for backend in BACKENDS} yield tuple(outputs[b] for b in BACKENDS) configs = parse_configs(inputs) for backend in BACKENDS: try: login(token=oauth_token.token) benchmark_name = f"{folder}/{backend}" benchmark_config = BenchmarkConfig( name=benchmark_name, backend=configs[backend], launcher=configs[LAUNCHER], scenario=configs[SCENARIO], ) benchmark_report = Benchmark.launch(benchmark_config) logout() benchmark_config.push_to_hub( repo_id=BENCHMARKS_REPO_ID, subfolder=benchmark_name, token=BENCHMARKS_HF_TOKEN, ) benchmark_report.push_to_hub( repo_id=BENCHMARKS_REPO_ID, subfolder=benchmark_name, token=BENCHMARKS_HF_TOKEN, ) except Exception: outputs[backend] = f"\n```python-traceback\n{traceback.format_exc()}```\n" yield tuple(outputs[b] for b in BACKENDS) gr.Info(f"❌ Error while running benchmark for {backend} backend.") else: outputs[backend] = f"\n{benchmark_report.to_markdown_text()}\n" yield tuple(outputs[b] for b in BACKENDS) gr.Info(f"✅ Benchmark for {backend} backend ran successfully.") def update_task(model_id): try: inferred_task = infer_task_from_model_name_or_path(model_id) except Exception: raise gr.Error( f"Error while inferring task for {model_id}, please select a task manually." ) if inferred_task not in TASKS: raise gr.Error( f"Task {inferred_task} is not supported by OpenVINO, please select a task manually." ) return inferred_task with gr.Blocks() as demo: # add login button gr.LoginButton() # add image gr.HTML( """""" "

🤗 Optimum-Benchmark Interface 🏋️

" "

" "This Space uses Optimum-Benchmark to automatically benchmark a model from the Hub on different backends." "
The results (config and report) will be pushed under your namespace in a benchmark repository on the Hub." "

" ) with gr.Column(variant="panel"): model = HuggingfaceHubSearch( placeholder="Search for a model", sumbit_on_select=True, search_type="model", label="model", ) with gr.Row(): task = gr.Dropdown( info="Task to run the benchmark on.", elem_id="task-dropdown", choices=TASKS, label="task", ) with gr.Column(variant="panel"): with gr.Accordion(label="Process Config", open=False, visible=True): process_config = get_process_config() with gr.Accordion(label="Inference Config", open=False, visible=True): inference_config = get_inference_config() with gr.Row() as backend_configs: with gr.Accordion(label="PyTorch Config", open=False, visible=True): pytorch_config = get_pytorch_config() with gr.Accordion(label="OpenVINO Config", open=False, visible=True): openvino_config = get_openvino_config() with gr.Row(): button = gr.Button(value="Run Benchmark", variant="primary") with gr.Row(): with gr.Accordion(label="PyTorch Report", open=True, visible=True): pytorch_report = gr.Markdown() with gr.Accordion(label="OpenVINO Report", open=True, visible=True): openvino_report = gr.Markdown() model.submit(inputs=model, outputs=task, fn=update_task) button.click( fn=run_benchmark, inputs={ task, model, # backends, *process_config.values(), *inference_config.values(), *pytorch_config.values(), *openvino_config.values(), }, outputs={ pytorch_report, openvino_report, }, concurrency_limit=1, ) if __name__ == "__main__": os.environ["LOG_TO_FILE"] = "0" os.environ["LOG_LEVEL"] = "INFO" setup_logging(level="INFO", prefix="MAIN-PROCESS") demo.queue(max_size=10).launch()