# This space used model: stabilityai/stable-diffusion-xl-base-1.0 # and model: stabilityai/stable-diffusion-xl-refiner-1.0 import numpy as np import gradio as gr import requests import time import json import base64 import os from PIL import Image from io import BytesIO batch_size=1 batch_count=1 class Prodia: def __init__(self, api_key, base=None): self.base = base or "https://api.prodia.com/v1" self.headers = { "X-Prodia-Key": api_key } def generate(self, params): response = self._post(f"{self.base}/sdxl/generate", params) return response.json() def get_job(self, job_id): response = self._get(f"{self.base}/job/{job_id}") return response.json() def wait(self, job): job_result = job while job_result['status'] not in ['succeeded', 'failed']: time.sleep(0.25) job_result = self.get_job(job['job']) return job_result def list_models(self): response = self._get(f"{self.base}/sdxl/models") return response.json() def list_samplers(self): response = self._get(f"{self.base}/sdxl/samplers") return response.json() def _post(self, url, params): headers = { **self.headers, "Content-Type": "application/json" } response = requests.post(url, headers=headers, data=json.dumps(params)) if response.status_code != 200: raise Exception(f"Bad Prodia Response: {response.status_code}") return response def _get(self, url): response = requests.get(url, headers=self.headers) if response.status_code != 200: raise Exception(f"Bad Prodia Response: {response.status_code}") return response def image_to_base64(image_path): # Open the image with PIL with Image.open(image_path) as image: # Convert the image to bytes buffered = BytesIO() image.save(buffered, format="PNG") # You can change format to PNG if needed # Encode the bytes to base64 img_str = base64.b64encode(buffered.getvalue()) return img_str.decode('utf-8') # Convert bytes to string prodia_client = Prodia(api_key=os.getenv("API_KEY")) def flip_text(prompt, negative_prompt, steps, cfg_scale, width, height, seed): result = prodia_client.generate({ "prompt": prompt, "negative_prompt": negative_prompt, "model": "sd_xl_base_1.0.safetensors [be9edd61]", "steps": steps, "sampler": "DPM++ 2M Karras", "cfg_scale": cfg_scale, "width": width, "height": height, "seed": seed }) job = prodia_client.wait(result) return job["imageUrl"] css = """ #prompt-container .form{ border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem} #component-16{border-top-width: 1px!important;margin-top: 1em} .image_duplication{position: absolute; width: 100px; left: 50px} .tabitem{border: 0 !important}.style(mobile_collapse=False, equal_height=True).style(mobile_collapse=False, equal_height=True).style(mobile_collapse=False, equal_height=True).style(mobile_collapse=False, equal_height=True """ with gr.Blocks(css=css) as demo: gr.HTML( """

Fast SDXL

""") with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): with gr.Column(scale=6, min_width=600): prompt = gr.Textbox(label="Prompt", placeholder="a cute cat, 8k", show_label=True, lines=1, elem_id="prompt-text-input) text_button = gr.Button("Generate", variant='primary', elem_id="generate") with gr.Row(): with gr.Column(scale=1): image_output = gr.Image() with gr.Row(): with gr.Accordion("Additionals inputs", open=False): with gr.Column(scale=1): negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry", placeholder="What you don't want to see in the image", show_label=True, lines=1) with gr.Column(scale=1): steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1) cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1) seed = gr.Number(label="Seed", value=-1) with gr.Column(scale=1): width = gr.Slider(label="↔️ Width", minimum=1024, maximum=1024, value=1024, step=8) height = gr.Slider(label="↕️ Height", minimum=1024, maximum=1024, value=1024, step=8) text_button.click(flip_text, inputs=[prompt, negative_prompt, steps, cfg_scale, width, height, seed], outputs=image_output) demo.queue(concurrency_count=16, max_size=20, api_open=False).launch(max_threads=64)