""" Copyright 2019 Brian Thompson Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging import sys from ast import literal_eval from collections import OrderedDict from math import ceil from time import time import numpy as np import pyximport pyximport.install(setup_args={'include_dirs':np.get_include()}, inplace=True, reload_support=True) from dp_core import make_dense_costs, score_path, sparse_dp, make_sparse_costs, dense_dp logger = logging.getLogger('vecalign') # set up in vecalign.py def preprocess_line(line): line = line.strip() if len(line) == 0: line = 'BLANK_LINE' return line def yield_overlaps(lines, num_overlaps): lines = [preprocess_line(line) for line in lines] for overlap in range(1, num_overlaps + 1): for out_line in layer(lines, overlap): # check must be here so all outputs are unique out_line2 = out_line[:10000] # limit line so dont encode arbitrarily long sentences yield out_line2 def read_in_embeddings(text_file, embed_file): """ Given a text file with candidate sentences and a corresponing embedding file, make a maping from candidate sentence to embedding index, and a numpy array of the embeddings """ sent2line = dict() with open(text_file, 'rt', encoding="utf-8") as fin: for ii, line in enumerate(fin): # don't know if it is a good idea to uncomment these two lines ### # if line.strip() in sent2line: # raise Exception('got multiple embeddings for the same line:',line) sent2line[line.strip()] = ii line_embeddings = np.load(embed_file,allow_pickle=True) print("LINE EMBEDDINGS SHAPE",line_embeddings.shape) # line_embeddings = np.fromfile(embed_file, dtype=np.float32, count=-1) # if line_embeddings.size == 0: # raise Exception('Got empty embedding file') # print("Line embeddings size",len(line_embeddings)) # laser_embedding_size = line_embeddings.size // len(sent2line) # currently hardcoded to 1024 # if laser_embedding_size != 1024: # logger.warning('expected an embedding size of 1024, got %s', laser_embedding_size) # logger.info('laser_embedding_size determined to be %d', laser_embedding_size) # line_embeddings.resize(line_embeddings.shape[0] // laser_embedding_size, laser_embedding_size) return sent2line, line_embeddings def make_doc_embedding(sent2line, line_embeddings, lines, num_overlaps): """ lines: sentences in input document to embed sent2line, line_embeddings: precomputed embeddings for lines (and overlaps of lines) """ lines = [preprocess_line(line) for line in lines] vecsize = line_embeddings.shape[1] vecs0 = np.empty((num_overlaps, len(lines), vecsize), dtype=np.float32) for ii, overlap in enumerate(range(1, num_overlaps + 1)): for jj, out_line in enumerate(layer(lines, overlap)): try: line_id = sent2line[out_line] except KeyError: logger.warning('Failed to find overlap=%d line "%s". Will use random vector.', overlap, out_line) line_id = None if line_id is not None: vec = line_embeddings[line_id] else: vec = np.random.random(vecsize) - 0.5 vec = vec / np.linalg.norm(vec) vecs0[ii, jj, :] = vec return vecs0 def make_norm1(vecs0): """ make vectors norm==1 so that cosine distance can be computed via dot product """ for ii in range(vecs0.shape[0]): for jj in range(vecs0.shape[1]): norm = np.sqrt(np.square(vecs0[ii, jj, :]).sum()) vecs0[ii, jj, :] = vecs0[ii, jj, :] / (norm + 1e-5) def layer(lines, num_overlaps, comb=' '): """ make front-padded overlapping sentences """ if num_overlaps < 1: raise Exception('num_overlaps must be >= 1') out = ['PAD', ] * min(num_overlaps - 1, len(lines)) for ii in range(len(lines) - num_overlaps + 1): out.append(comb.join(lines[ii:ii + num_overlaps])) return out def read_alignments(fin): alignments = [] with open(fin, 'rt', encoding="utf-8") as infile: for line in infile: fields = [x.strip() for x in line.split(':') if len(x.strip())] if len(fields) < 2: raise Exception('Got line "%s", which does not have at least two ":" separated fields' % line.strip()) try: src = literal_eval(fields[0]) tgt = literal_eval(fields[1]) except: raise Exception('Failed to parse line "%s"' % line.strip()) alignments.append((src, tgt)) # I know bluealign files have a few entries entries missing, # but I don't fix them in order to be consistent previous reported scores return alignments def print_alignments(alignments, scores=None, file=sys.stdout): if scores is not None: for (x, y), s in zip(alignments, scores): print('%s:%s:%.6f' % (x, y, s), file=file) else: for x, y in alignments: print('%s:%s' % (x, y), file=file) class DeletionKnob(object): """ A good deletion penalty is dependent on normalization, and probably language, domain, etc, etc I want a way to control deletion penalty that generalizes well... Sampling costs and use percentile seems to work fairly well. """ def __init__(self, samp, res_min, res_max): self.res_min = res_min self.res_max = res_max if self.res_min >= self.res_max: logger.warning('res_max <= res_min, increasing it') self.res_max = self.res_min + 1e-4 num_bins = 1000 num_pts = 30 self.hist, self.bin_edges = np.histogram(samp, bins=num_bins, range=[self.res_min, self.res_max], density=True) dx = self.bin_edges[1] - self.bin_edges[0] self.cdf = np.cumsum(self.hist) * dx interp_points = [(0, self.res_min), ] for knob_val in np.linspace(0, 1, num_pts - 1)[1:-1]: cdf_idx = np.searchsorted(self.cdf, knob_val) cdf_val = self.res_min + cdf_idx / float(num_bins) * (self.res_max - self.res_min) interp_points.append((knob_val, cdf_val)) interp_points.append((1, self.res_max)) self.x, self.y = zip(*interp_points) def percentile_frac_to_del_penalty(self, knob_val): del_pen = np.interp([knob_val], self.x, self.y)[0] return del_pen def make_alignment_types(max_alignment_size): # return list of all (n,m) where n+m <= this alignment_types = [] for x in range(1, max_alignment_size): for y in range(1, max_alignment_size): if x + y <= max_alignment_size: alignment_types.append((x, y)) return alignment_types def ab2xy_w_offset(aa, bb_idx, bb_offset): bb_from_side = bb_idx + bb_offset[aa] xx = aa - bb_from_side yy = bb_from_side return (xx, yy) def xy2ab_w_offset(xx, yy, bb_offset): aa = xx + yy bb_from_side = yy bb = bb_from_side - bb_offset[aa] return aa, bb def process_scores(scores, alignments): # floating point sometimes gives negative numbers, which is a little unnerving ... scores = np.clip(scores, a_min=0, a_max=None) for ii, (x_algn, y_algn) in enumerate(alignments): # deletion penalty is pretty arbitrary, just report 0 if len(x_algn) == 0 or len(y_algn) == 0: scores[ii] = 0.0 # report sores un-normalized by alignment sizes # (still normalized with random vectors, though) else: scores[ii] = scores[ii] / len(x_algn) / len(y_algn) return scores def sparse_traceback(a_b_csum, a_b_xp, a_b_yp, b_offset, xsize, ysize): alignments = [] xx = xsize yy = ysize cum_costs = [] while True: aa, bb = xy2ab_w_offset(xx, yy, b_offset) cum_costs.append(a_b_csum[aa, bb]) xp = a_b_xp[aa, bb] yp = a_b_yp[aa, bb] if xx == yy == 0: break if xx < 0 or yy < 0: raise Exception('traceback bug') x_side = list(range(xx - xp, xx)) y_side = list(range(yy - yp, yy)) alignments.append((x_side, y_side)) xx = xx - xp yy = yy - yp alignments.reverse() cum_costs.reverse() costs = np.array(cum_costs[1:]) - np.array(cum_costs[:-1]) # "costs" are scaled by x_alignment_size * y_alignment_size # and the cost of a deletion is del_penalty # "scores": 0 for deletion/insertion, # and cosine distance, *not* scaled # by len(x_alignment)*len(y_alignment) scores = process_scores(scores=costs, alignments=alignments) return alignments, scores def dense_traceback(x_y_tb): xsize, ysize = x_y_tb.shape xx = xsize - 1 yy = ysize - 1 alignments = [] while True: if xx == yy == 0: break bp = x_y_tb[xx, yy] if bp == 0: xp, yp = 1, 1 alignments.append(([xx - 1], [yy - 1])) elif bp == 1: xp, yp = 0, 1 alignments.append(([], [yy - 1])) elif bp == 2: xp, yp = 1, 0 alignments.append(([xx - 1], [])) else: raise Exception('got unknown value') xx = xx - xp yy = yy - yp alignments.reverse() return alignments def append_slant(path, xwidth, ywidth): """ Append quantized approximation to a straight line from current x,y to a point at (x+xwidth, y+ywidth) """ NN = xwidth + ywidth xstart, ystart = path[-1] for ii in range(1, NN + 1): x = xstart + round(xwidth * ii / NN) y = ystart + round(ywidth * ii / NN) # In the case of ties we want them to round differently, # so explicitly make sure we take a step of 1, not 0 or 2 lastx, lasty = path[-1] delta = x + y - lastx - lasty if delta == 1: path.append((x, y)) elif delta == 2: path.append((x - 1, y)) elif delta == 0: path.append((x + 1, y)) def alignment_to_search_path(algn): """ Given an alignment, make searchpath. Searchpath must step exactly one position in x XOR y at each time step. In the case of a block of deletions, the order found by DP is not meaningful. To make things consistent and to improve the probability of recovering from search errors, we search an approximately straight line through a block of deletions. We do the same through a many-many alignment, even though we currently don't refine a many-many alignment... """ path = [(0, 0), ] xdel, ydel = 0, 0 ydel = 0 for x, y in algn: if len(x) and len(y): append_slant(path, xdel, ydel) xdel, ydel = 0, 0 append_slant(path, len(x), len(y)) elif len(x): xdel += len(x) elif len(y): ydel += len(y) append_slant(path, xdel, ydel) return path def extend_alignments(course_alignments, size0, size1): """ extend alignments to include new endpoints size0, size1 if alignments are larger than size0/size1, raise exception """ # could be a string of deletions or insertions at end, so cannot just grab last one xmax = 0 # maximum x value in course_alignments ymax = 0 # maximum y value in course_alignments for x, y in course_alignments: for xval in x: xmax = max(xmax, xval) for yval in y: ymax = max(ymax, yval) if xmax > size0 or ymax > size1: raise Exception('asked to extend alignments but already bigger than requested') # do not duplicate xmax/ymax, do include size0/size1 extra_x = list(range(xmax + 1, size0 + 1)) extra_y = list(range(ymax + 1, size1 + 1)) logger.debug('extending alignments in x by %d and y by %d', len(extra_x), len(extra_y)) if len(extra_x) == 0: for yval in extra_y: course_alignments.append(([], [yval])) elif len(extra_y) == 0: for xval in extra_x: course_alignments.append(([xval], [])) else: course_alignments.append((extra_x, extra_y)) def upsample_alignment(algn): def upsample_one_alignment(xx): return list(range(min(xx) * 2, (max(xx) + 1) * 2)) new_algn = [] for xx, yy in algn: if len(xx) == 0: for yyy in upsample_one_alignment(yy): new_algn.append(([], [yyy])) elif len(yy) == 0: for xxx in upsample_one_alignment(xx): new_algn.append(([xxx], [])) else: new_algn.append((upsample_one_alignment(xx), upsample_one_alignment(yy))) return new_algn def make_del_knob(e_laser, f_laser, e_laser_norms, f_laser_norms, sample_size): e_size = e_laser.shape[0] f_size = f_laser.shape[0] if e_size > 0 and f_size > 0 and sample_size > 0: if e_size * f_size < sample_size: # dont sample, just compute full matrix sample_size = e_size * f_size x_idxs = np.zeros(sample_size, dtype=np.int32) y_idxs = np.zeros(sample_size, dtype=np.int32) c = 0 for ii in range(e_size): for jj in range(f_size): x_idxs[c] = ii y_idxs[c] = jj c += 1 else: # get random samples x_idxs = np.random.choice(range(e_size), size=sample_size, replace=True).astype(np.int32) y_idxs = np.random.choice(range(f_size), size=sample_size, replace=True).astype(np.int32) # output random_scores = np.empty(sample_size, dtype=np.float32) score_path(x_idxs, y_idxs, e_laser_norms, f_laser_norms, e_laser, f_laser, random_scores, ) min_score = 0 max_score = max(random_scores) # could bump this up... but its probably fine else: # Not much we can do here... random_scores = np.array([0.0, 0.5, 1.0]) # ??? min_score = 0 max_score = 1 # ???? del_knob = DeletionKnob(random_scores, min_score, max_score) return del_knob def compute_norms(vecs0, vecs1, num_samples, overlaps_to_use=None): # overlaps_to_use = 10 # 10 matches before overlaps1, size1, dim = vecs1.shape overlaps0, size0, dim0 = vecs0.shape assert (dim == dim0) if overlaps_to_use is not None: if overlaps_to_use > overlaps1: raise Exception('Cannot use more overlaps than provided. You may want to re-run make_verlaps.py with a larger -n value') else: overlaps_to_use = overlaps1 samps_per_overlap = ceil(num_samples / overlaps_to_use) if size1 and samps_per_overlap: # sample other size (from all overlaps) to compre to this side vecs1_rand_sample = np.empty((samps_per_overlap * overlaps_to_use, dim), dtype=np.float32) for overlap_ii in range(overlaps_to_use): idxs = np.random.choice(range(size1), size=samps_per_overlap, replace=True) random_vecs = vecs1[overlap_ii, idxs, :] vecs1_rand_sample[overlap_ii * samps_per_overlap:(overlap_ii + 1) * samps_per_overlap, :] = random_vecs norms0 = np.empty((overlaps0, size0), dtype=np.float32) for overlap_ii in range(overlaps0): e_laser = vecs0[overlap_ii, :, :] sim = np.matmul(e_laser, vecs1_rand_sample.T) norms0[overlap_ii, :] = 1.0 - sim.mean(axis=1) else: # no samples, no normalization norms0 = np.ones((overlaps0, size0)).astype(np.float32) return norms0 def downsample_vectors(vecs1): a, b, c = vecs1.shape half = np.empty((a, b // 2, c), dtype=np.float32) for ii in range(a): # average consecutive vectors for jj in range(0, b - b % 2, 2): v1 = vecs1[ii, jj, :] v2 = vecs1[ii, jj + 1, :] half[ii, jj // 2, :] = v1 + v2 # compute mean for all vectors mean = np.mean(half[ii, :, :], axis=0) for jj in range(0, b - b % 2, 2): # remove mean half[ii, jj // 2, :] = half[ii, jj // 2, :] - mean # make vectors norm==1 so dot product is cosine distance make_norm1(half) return half def vecalign(vecs0, vecs1, final_alignment_types, del_percentile_frac, width_over2, max_size_full_dp, costs_sample_size, num_samps_for_norm, norms0=None, norms1=None): if width_over2 < 3: logger.warning('width_over2 was set to %d, which does not make sense. increasing to 3.', width_over2) width_over2 = 3 # make sure input embeddings are norm==1 make_norm1(vecs0) make_norm1(vecs1) # save off runtime stats for summary runtimes = OrderedDict() # Determine stack depth s0, s1 = vecs0.shape[1], vecs1.shape[1] max_depth = 0 while s0 * s1 > max_size_full_dp ** 2: max_depth += 1 s0 = s0 // 2 s1 = s1 // 2 # init recursion stack # depth is 0-based (full size is 0, 1 is half, 2 is quarter, etc) stack = {0: {'v0': vecs0, 'v1': vecs1}} # downsample sentence vectors t0 = time() for depth in range(1, max_depth + 1): stack[depth] = {'v0': downsample_vectors(stack[depth - 1]['v0']), 'v1': downsample_vectors(stack[depth - 1]['v1'])} runtimes['Downsample embeddings'] = time() - t0 # compute norms for all depths, add sizes, add alignment types t0 = time() for depth in stack: stack[depth]['size0'] = stack[depth]['v0'].shape[1] stack[depth]['size1'] = stack[depth]['v1'].shape[1] stack[depth]['alignment_types'] = final_alignment_types if depth == 0 else [(1, 1)] if depth == 0 and norms0 is not None: if norms0.shape != vecs0.shape[:2]: print('norms0.shape:', norms0.shape) print('vecs0.shape[:2]:', vecs0.shape[:2]) raise Exception('norms0 wrong shape') stack[depth]['n0'] = norms0 else: stack[depth]['n0'] = compute_norms(stack[depth]['v0'], stack[depth]['v1'], num_samps_for_norm) if depth == 0 and norms1 is not None: if norms1.shape != vecs1.shape[:2]: print('norms1.shape:', norms1.shape) print('vecs1.shape[:2]:', vecs1.shape[:2]) raise Exception('norms1 wrong shape') stack[depth]['n1'] = norms1 else: stack[depth]['n1'] = compute_norms(stack[depth]['v1'], stack[depth]['v0'], num_samps_for_norm) runtimes['Normalize embeddings'] = time() - t0 # Compute deletion penalty for all depths t0 = time() for depth in stack: stack[depth]['del_knob'] = make_del_knob(e_laser=stack[depth]['v0'][0, :, :], f_laser=stack[depth]['v1'][0, :, :], e_laser_norms=stack[depth]['n0'][0, :], f_laser_norms=stack[depth]['n1'][0, :], sample_size=costs_sample_size) stack[depth]['del_penalty'] = stack[depth]['del_knob'].percentile_frac_to_del_penalty(del_percentile_frac) logger.debug('del_penalty at depth %d: %f', depth, stack[depth]['del_penalty']) runtimes['Compute deletion penalties'] = time() - t0 tt = time() - t0 logger.debug('%d x %d full DP make features: %.6fs (%.3e per dot product)', stack[max_depth]['size0'], stack[max_depth]['size1'], tt, tt / (stack[max_depth]['size0'] + 1e-6) / (stack[max_depth]['size1'] + 1e-6)) # full DP at maximum recursion depth t0 = time() stack[max_depth]['costs_1to1'] = make_dense_costs(stack[max_depth]['v0'], stack[max_depth]['v1'], stack[max_depth]['n0'], stack[max_depth]['n1']) runtimes['Full DP make features'] = time() - t0 t0 = time() _, stack[max_depth]['x_y_tb'] = dense_dp(stack[max_depth]['costs_1to1'], stack[max_depth]['del_penalty']) stack[max_depth]['alignments'] = dense_traceback(stack[max_depth]['x_y_tb']) runtimes['Full DP'] = time() - t0 # upsample the path up to the top resolution compute_costs_times = [] dp_times = [] upsample_depths = [0, ] if max_depth == 0 else list(reversed(range(0, max_depth))) for depth in upsample_depths: if max_depth > 0: # upsample previoius alignment to current resolution course_alignments = upsample_alignment(stack[depth + 1]['alignments']) # features may have been truncated when downsampleing, so alignment may need extended extend_alignments(course_alignments, stack[depth]['size0'], stack[depth]['size1']) # in-place else: # We did a full size 1-1 search, so search same size with more alignment types course_alignments = stack[0]['alignments'] # convert couse alignments to a searchpath stack[depth]['searchpath'] = alignment_to_search_path(course_alignments) # compute ccosts for sparse DP t0 = time() stack[depth]['a_b_costs'], stack[depth]['b_offset'] = make_sparse_costs(stack[depth]['v0'], stack[depth]['v1'], stack[depth]['n0'], stack[depth]['n1'], stack[depth]['searchpath'], stack[depth]['alignment_types'], width_over2) tt = time() - t0 num_dot_products = len(stack[depth]['b_offset']) * len(stack[depth]['alignment_types']) * width_over2 * 2 logger.debug('%d x %d sparse DP (%d alignment types, %d window) make features: %.6fs (%.3e per dot product)', stack[max_depth]['size0'], stack[max_depth]['size1'], len(stack[depth]['alignment_types']), width_over2 * 2, tt, tt / (num_dot_products + 1e6)) compute_costs_times.append(time() - t0) t0 = time() # perform sparse DP stack[depth]['a_b_csum'], stack[depth]['a_b_xp'], stack[depth]['a_b_yp'], \ stack[depth]['new_b_offset'] = sparse_dp(stack[depth]['a_b_costs'], stack[depth]['b_offset'], stack[depth]['alignment_types'], stack[depth]['del_penalty'], stack[depth]['size0'], stack[depth]['size1']) # performace traceback to get alignments and alignment scores # for debugging, avoid overwriting stack[depth]['alignments'] akey = 'final_alignments' if depth == 0 else 'alignments' stack[depth][akey], stack[depth]['alignment_scores'] = sparse_traceback(stack[depth]['a_b_csum'], stack[depth]['a_b_xp'], stack[depth]['a_b_yp'], stack[depth]['new_b_offset'], stack[depth]['size0'], stack[depth]['size1']) dp_times.append(time() - t0) runtimes['Upsample DP compute costs'] = sum(compute_costs_times[:-1]) runtimes['Upsample DP'] = sum(dp_times[:-1]) runtimes['Final DP compute costs'] = compute_costs_times[-1] runtimes['Final DP'] = dp_times[-1] # log time stats max_key_str_len = max([len(key) for key in runtimes]) for key in runtimes: if runtimes[key] > 5e-5: logger.info(key + ' took ' + '.' * (max_key_str_len + 5 - len(key)) + ('%.4fs' % runtimes[key]).rjust(7)) return stack