from transformers import AutoModel, AutoTokenizer
from copy import deepcopy
import gradio as gr
import mdtex2html
from model.openlamm import LAMMPEFTModel
import torch
import json
# init the model
args = {
'model': 'openllama_peft',
'encoder_ckpt_path': './pretrained_ckpt/ViT-L-14.pt',
'vicuna_ckpt_path': './pretrained_ckpt/llm_7b_v0',
'delta_ckpt_path': './pretrained_ckpt/llm7b_lora32_lamm186k/pytorch_model.pt',
'stage': 2,
'max_tgt_len': 128,
'lora_r': 32,
'lora_alpha': 32,
'lora_dropout': 0.1,
'lora_target_modules': ['q_proj', 'k_proj', 'v_proj', 'o_proj'],
'vision_type': 'image',
'vision_feature_type': 'local',
'num_vision_token': 256,
'encoder_pretrain': 'clip',
'system_header': True,
}
model = LAMMPEFTModel(**args)
delta_ckpt = torch.load(args['delta_ckpt_path'], map_location=torch.device('cpu'))
model.load_state_dict(delta_ckpt, strict=False)
model = model.eval().half().cuda()
print(f'[!] init the 13b model over ...')
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'
'
else:
lines[i] = f'
'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "
"+line
text = "".join(lines)
if text.endswith("##"):
text = text[:-2]
return text
def re_predict(
input,
image_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
):
# drop the latest query and answers and generate again
q, a = history.pop()
chatbot.pop()
return predict(q, image_path, chatbot, max_length, top_p, temperature, history, modality_cache)
def predict(
input,
image_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
):
if image_path is None: #
return [(input, "There is no input data provided! Please upload your data and start the conversation.")]
else:
print(f'[!] image path: {image_path}\n') # [!] audio path: {audio_path}\n[!] video path: {video_path}\n[!] thermal path: {thermal_path}')
# prepare the prompt
prompt_text = ''
for idx, (q, a) in enumerate(history):
if idx == 0:
prompt_text += f'{q}\n### Assistant: {a}\n###'
else:
prompt_text += f' Human: {q}\n### Assistant: {a}\n###'
if len(history) == 0:
prompt_text += f'{input}'
else:
prompt_text += f' Human: {input}'
response = model.generate({
'prompt': [prompt_text] if not isinstance(prompt_text, list) else prompt_text,
'image_paths': [image_path] if image_path else [],
'top_p': top_p,
'temperature': temperature,
'max_tgt_len': max_length,
'modality_embeds': modality_cache
})
if isinstance(response, list):
response = response[0]
chatbot.append((parse_text(input), parse_text(response)))
history.append((input, response))
return chatbot, history, modality_cache
def reset_user_input():
return gr.update(value='')
def reset_dialog():
return [], []
def reset_state():
return None, [], [], []
with gr.Blocks(scale=4) as demo:
gr.Image("./images/lamm_title.png", show_label=False, height=50)
gr.HTML(
"""
🏠 Home Page • 🌏 Github • 📰 Paper • ▶️ YouTube • 📺 Bilibili • 📀 Data • 📦 LAMM Models
"""
)
# gr.HTML("""LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset, Framework, and Benchmark
""")
# gr.Markdown(
# """
#
#
#
#
#
#
#
#
#
#
# Drop your image & Start talking with LAMM models.
# """)
with gr.Row(scale=1):
with gr.Column(scale=1):
image_path = gr.Image(type="filepath", label="Image", value=None).style(height=600)
chatbot = gr.Chatbot(scale=1).style(height=600)
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(container=False)
with gr.Column(min_width=32, scale=1):
with gr.Row(scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Row(scale=1):
resubmitBtn = gr.Button("Resubmit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 600, value=256, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.01, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.9, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
modality_cache = gr.State([])
submitBtn.click(
predict, [
user_input,
image_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
], [
chatbot,
history,
modality_cache
],
show_progress=True
)
resubmitBtn.click(
re_predict, [
user_input,
image_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
], [
chatbot,
history,
modality_cache
],
show_progress=True
)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[
image_path,
chatbot,
history,
modality_cache
], show_progress=True)
demo.queue().launch(enable_queue=True)