import math from abc import ABC, abstractmethod from dataclasses import dataclass from typing import Callable, Optional, Tuple, Union import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput from torch import Tensor from xora.utils.torch_utils import append_dims def simple_diffusion_resolution_dependent_timestep_shift( samples: Tensor, timesteps: Tensor, n: int = 32 * 32, ) -> Tensor: if len(samples.shape) == 3: _, m, _ = samples.shape elif len(samples.shape) in [4, 5]: m = math.prod(samples.shape[2:]) else: raise ValueError( "Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)" ) snr = (timesteps / (1 - timesteps)) ** 2 shift_snr = torch.log(snr) + 2 * math.log(m / n) shifted_timesteps = torch.sigmoid(0.5 * shift_snr) return shifted_timesteps def time_shift(mu: float, sigma: float, t: Tensor): return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) def get_normal_shift( n_tokens: int, min_tokens: int = 1024, max_tokens: int = 4096, min_shift: float = 0.95, max_shift: float = 2.05, ) -> Callable[[float], float]: m = (max_shift - min_shift) / (max_tokens - min_tokens) b = min_shift - m * min_tokens return m * n_tokens + b def sd3_resolution_dependent_timestep_shift( samples: Tensor, timesteps: Tensor ) -> Tensor: """ Shifts the timestep schedule as a function of the generated resolution. In the SD3 paper, the authors empirically how to shift the timesteps based on the resolution of the target images. For more details: https://arxiv.org/pdf/2403.03206 In Flux they later propose a more dynamic resolution dependent timestep shift, see: https://github.com/black-forest-labs/flux/blob/87f6fff727a377ea1c378af692afb41ae84cbe04/src/flux/sampling.py#L66 Args: samples (Tensor): A batch of samples with shape (batch_size, channels, height, width) or (batch_size, channels, frame, height, width). timesteps (Tensor): A batch of timesteps with shape (batch_size,). Returns: Tensor: The shifted timesteps. """ if len(samples.shape) == 3: _, m, _ = samples.shape elif len(samples.shape) in [4, 5]: m = math.prod(samples.shape[2:]) else: raise ValueError( "Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)" ) shift = get_normal_shift(m) return time_shift(shift, 1, timesteps) class TimestepShifter(ABC): @abstractmethod def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor: pass @dataclass class RectifiedFlowSchedulerOutput(BaseOutput): """ Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin, TimestepShifter): order = 1 @register_to_config def __init__( self, num_train_timesteps=1000, shifting: Optional[str] = None, base_resolution: int = 32**2, ): super().__init__() self.init_noise_sigma = 1.0 self.num_inference_steps = None self.timesteps = self.sigmas = torch.linspace( 1, 1 / num_train_timesteps, num_train_timesteps ) self.delta_timesteps = self.timesteps - torch.cat( [self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])] ) self.shifting = shifting self.base_resolution = base_resolution def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor: if self.shifting == "SD3": return sd3_resolution_dependent_timestep_shift(samples, timesteps) elif self.shifting == "SimpleDiffusion": return simple_diffusion_resolution_dependent_timestep_shift( samples, timesteps, self.base_resolution ) return timesteps def set_timesteps( self, num_inference_steps: int, samples: Tensor, device: Union[str, torch.device] = None, ): """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples. samples (`Tensor`): A batch of samples with shape. device (`Union[str, torch.device]`, *optional*): The device to which the timesteps tensor will be moved. """ num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps) timesteps = torch.linspace(1, 1 / num_inference_steps, num_inference_steps).to( device ) self.timesteps = self.shift_timesteps(samples, timesteps) self.delta_timesteps = self.timesteps - torch.cat( [self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])] ) self.num_inference_steps = num_inference_steps self.sigmas = self.timesteps def scale_model_input( self, sample: torch.FloatTensor, timestep: Optional[int] = None ) -> torch.FloatTensor: # pylint: disable=unused-argument """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.FloatTensor`): input sample timestep (`int`, optional): current timestep Returns: `torch.FloatTensor`: scaled input sample """ return sample def step( self, model_output: torch.FloatTensor, timestep: torch.FloatTensor, sample: torch.FloatTensor, eta: float = 0.0, use_clipped_model_output: bool = False, generator=None, variance_noise: Optional[torch.FloatTensor] = None, return_dict: bool = True, ) -> Union[RectifiedFlowSchedulerOutput, Tuple]: # pylint: disable=unused-argument """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor`): The direct output from learned diffusion model. timestep (`float`): The current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): A current instance of a sample created by the diffusion process. eta (`float`): The weight of noise for added noise in diffusion step. use_clipped_model_output (`bool`, defaults to `False`): If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would coincide with the one provided as input and `use_clipped_model_output` has no effect. generator (`torch.Generator`, *optional*): A random number generator. variance_noise (`torch.FloatTensor`): Alternative to generating noise with `generator` by directly providing the noise for the variance itself. Useful for methods such as [`CycleDiffusion`]. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`. Returns: [`~schedulers.scheduling_utils.RectifiedFlowSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.rf_scheduler.RectifiedFlowSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if timestep.ndim == 0: # Global timestep current_index = (self.timesteps - timestep).abs().argmin() dt = self.delta_timesteps.gather(0, current_index.unsqueeze(0)) else: # Timestep per token assert timestep.ndim == 2 current_index = ( (self.timesteps[:, None, None] - timestep[None]).abs().argmin(dim=0) ) dt = self.delta_timesteps[current_index] # Special treatment for zero timestep tokens - set dt to 0 so prev_sample = sample dt = torch.where(timestep == 0.0, torch.zeros_like(dt), dt)[..., None] prev_sample = sample - dt * model_output if not return_dict: return (prev_sample,) return RectifiedFlowSchedulerOutput(prev_sample=prev_sample) def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.FloatTensor, ) -> torch.FloatTensor: sigmas = timesteps sigmas = append_dims(sigmas, original_samples.ndim) alphas = 1 - sigmas noisy_samples = alphas * original_samples + sigmas * noise return noisy_samples