Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import datetime | |
import logging | |
import time | |
from collections import defaultdict, deque | |
import torch | |
import torch.distributed as dist | |
from unimernet.common import dist_utils | |
class SmoothedValue(object): | |
"""Track a series of values and provide access to smoothed values over a | |
window or the global series average. | |
""" | |
def __init__(self, window_size=20, fmt=None): | |
if fmt is None: | |
fmt = "{median:.4f} ({global_avg:.4f})" | |
self.deque = deque(maxlen=window_size) | |
self.total = 0.0 | |
self.count = 0 | |
self.fmt = fmt | |
def update(self, value, n=1): | |
self.deque.append(value) | |
self.count += n | |
self.total += value * n | |
def synchronize_between_processes(self): | |
""" | |
Warning: does not synchronize the deque! | |
""" | |
if not dist_utils.is_dist_avail_and_initialized(): | |
return | |
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") | |
dist.barrier() | |
dist.all_reduce(t) | |
t = t.tolist() | |
self.count = int(t[0]) | |
self.total = t[1] | |
def median(self): | |
d = torch.tensor(list(self.deque)) | |
return d.median().item() | |
def avg(self): | |
d = torch.tensor(list(self.deque), dtype=torch.float32) | |
return d.mean().item() | |
def global_avg(self): | |
return self.total / self.count | |
def max(self): | |
return max(self.deque) | |
def value(self): | |
return self.deque[-1] | |
def __str__(self): | |
return self.fmt.format( | |
median=self.median, | |
avg=self.avg, | |
global_avg=self.global_avg, | |
max=self.max, | |
value=self.value, | |
) | |
class MetricLogger(object): | |
def __init__(self, delimiter="\t"): | |
self.meters = defaultdict(SmoothedValue) | |
self.delimiter = delimiter | |
def update(self, **kwargs): | |
for k, v in kwargs.items(): | |
if isinstance(v, torch.Tensor): | |
v = v.item() | |
assert isinstance(v, (float, int)) | |
self.meters[k].update(v) | |
def __getattr__(self, attr): | |
if attr in self.meters: | |
return self.meters[attr] | |
if attr in self.__dict__: | |
return self.__dict__[attr] | |
raise AttributeError( | |
"'{}' object has no attribute '{}'".format(type(self).__name__, attr) | |
) | |
def __str__(self): | |
loss_str = [] | |
for name, meter in self.meters.items(): | |
loss_str.append("{}: {}".format(name, str(meter))) | |
return self.delimiter.join(loss_str) | |
def global_avg(self): | |
loss_str = [] | |
for name, meter in self.meters.items(): | |
loss_str.append("{}: {:.4f}".format(name, meter.global_avg)) | |
return self.delimiter.join(loss_str) | |
def synchronize_between_processes(self): | |
for meter in self.meters.values(): | |
meter.synchronize_between_processes() | |
def add_meter(self, name, meter): | |
self.meters[name] = meter | |
def log_every(self, iterable, print_freq, header=None): | |
i = 0 | |
if not header: | |
header = "" | |
start_time = time.time() | |
end = time.time() | |
iter_time = SmoothedValue(fmt="{avg:.4f}") | |
data_time = SmoothedValue(fmt="{avg:.4f}") | |
space_fmt = ":" + str(len(str(len(iterable)))) + "d" | |
log_msg = [ | |
header, | |
"[{0" + space_fmt + "}/{1}]", | |
"eta: {eta}", | |
"{meters}", | |
"time: {time}", | |
"data: {data}", | |
] | |
if torch.cuda.is_available(): | |
log_msg.append("max mem: {memory:.0f}") | |
log_msg = self.delimiter.join(log_msg) | |
MB = 1024.0 * 1024.0 | |
for obj in iterable: | |
data_time.update(time.time() - end) | |
yield obj | |
iter_time.update(time.time() - end) | |
if i % print_freq == 0 or i == len(iterable) - 1: | |
eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
if torch.cuda.is_available(): | |
print( | |
log_msg.format( | |
i, | |
len(iterable), | |
eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), | |
data=str(data_time), | |
memory=torch.cuda.max_memory_allocated() / MB, | |
) | |
) | |
else: | |
print( | |
log_msg.format( | |
i, | |
len(iterable), | |
eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), | |
data=str(data_time), | |
) | |
) | |
i += 1 | |
end = time.time() | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print( | |
"{} Total time: {} ({:.4f} s / it)".format( | |
header, total_time_str, total_time / len(iterable) | |
) | |
) | |
class AttrDict(dict): | |
def __init__(self, *args, **kwargs): | |
super(AttrDict, self).__init__(*args, **kwargs) | |
self.__dict__ = self | |
def setup_logger(): | |
logging.basicConfig( | |
level=logging.INFO if dist_utils.is_main_process() else logging.WARN, | |
format="%(asctime)s [%(levelname)s] %(message)s", | |
handlers=[logging.StreamHandler()], | |
) | |