import json import pandas as pd from collections import defaultdict import gradio as gr import copy as cp import numpy as np def listinstr(lst, s): assert isinstance(lst, list) for item in lst: if item in s: return True return False # CONSTANTS-URL URL = "http://opencompass.openxlab.space/utils/OpenVLM.json" VLMEVALKIT_README = 'https://raw.githubusercontent.com/open-compass/VLMEvalKit/main/README.md' # CONSTANTS-CITATION CITATION_BUTTON_TEXT = r"""@misc{2023opencompass, title={OpenCompass: A Universal Evaluation Platform for Foundation Models}, author={OpenCompass Contributors}, howpublished = {\url{https://github.com/open-compass/opencompass}}, year={2023} }""" CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" # CONSTANTS-TEXT LEADERBORAD_INTRODUCTION = """# OpenVLM Leaderboard ### Welcome to the OpenVLM Leaderboard! On this leaderboard we share the evaluation results of VLMs obtained by the OpenSource Framework [**VLMEvalKit**](https://github.com/open-compass/VLMEvalKit) 🏆 ### Currently, OpenVLM Leaderboard covers {} different VLMs (including GPT-4v, Gemini, QwenVLPlus, LLaVA, etc.) and {} different multi-modal benchmarks. This leaderboard was last updated: {}. """ # CONSTANTS-FIELDS META_FIELDS = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model', 'OpenSource', 'Verified'] MAIN_FIELDS = ['MMBench_TEST_EN', 'MMBench_TEST_CN', 'CCBench', 'MME', 'SEEDBench_IMG', 'MMVet', 'MMMU_VAL', 'MathVista', 'HallusionBench', 'LLaVABench', 'AI2D'] MMBENCH_FIELDS = ['MMBench_TEST_EN', 'MMBench_DEV_EN', 'MMBench_TEST_CN', 'MMBench_DEV_CN', 'CCBench'] MODEL_SIZE = ['<10B', '10B-20B', '20B-40B', '>40B', 'Unknown'] MODEL_TYPE = ['API', 'OpenSource', 'Proprietary'] # The README file for each benchmark LEADERBOARD_MD = {} LEADERBOARD_MD['MAIN'] = """ ## Main Evaluation Results - Avg Score: The average score on all VLM Benchmarks (normalized to 0 - 100, the higher the better). - Avg Rank: The average rank on all VLM Benchmarks (the lower the better). - The overall evaluation results on 10 VLM benchmarks, sorted by the ascending order of Avg Rank. """ LEADERBOARD_MD['SEEDBench_IMG'] = """ ## SEEDBench_IMG Scores (Prefetch / ChatGPT Answer Extraction / Official Leaderboard) - **Overall**: The overall accuracy across all questions with **ChatGPT answer matching**. - **Overall (prefetch)**: The accuracy when using exact matching for evaluation. - **Overall (official)**: SEEDBench_IMG acc on the official leaderboard (if applicable). """ LEADERBOARD_MD['MMVet'] = """ ## MMVet Evaluation Results - In MMVet Evaluation, we use GPT-4-Turbo (gpt-4-1106-preview) as the judge LLM to assign scores to the VLM outputs. We only perform the evaluation once due to the limited variance among results of multiple evaluation pass originally reported. - No specific prompt template adopted for **ALL VLMs**. - We also provide performance on the [**Official Leaderboard**](https://paperswithcode.com/sota/visual-question-answering-on-mm-vet) for models that are applicable. Those results are obtained with GPT-4-0314 evaluator (which has been deperacted for new users). """ LEADERBOARD_MD['MMMU_VAL'] = """ ## MMMU Validation Evaluation Results - For MMMU, we support the evaluation of the `dev` (150 samples) and `validation` (900 samples) set. Here we only report the results on the `validation` set. - **Answer Inference:** - For models with `interleave_generate` interface (accept interleaved images & texts as inputs), all testing samples can be inferred. **`interleave_generate` is adopted for inference.** - For models without `interleave_generate` interface, samples with more than one images are skipped (42 out of 1050, directly count as wrong). **`generate` is adopted for inference.** - **Evaluation**: - MMMU include two types of questions: **multi-choice questions** & **open-ended QA**. - For **open-ended QA (62/1050)**, we re-formulate it as multi-choice questions: `{'question': 'QQQ', 'answer': 'AAA'} -> {'question': 'QQQ', 'A': 'AAA', 'B': 'Other Answers', 'answer': 'A'}`, and then adopt the same evaluation paradigm for **multi-choice questions**. - For **multi-choice questions (988/1050)**, we use **GPT-3.5-Turbo-0613** for matching prediction with options if heuristic matching does not work. """ LEADERBOARD_MD['MathVista'] = """ ## MMMU TestMini Evaluation Results - We report the evaluation results on MathVista **TestMini**, which include 1000 test samples. - We adopt `GPT-4-Turbo (1106)` as the answer extractor when we failed to extract the answer with heuristic matching. - The performance of **Human (High school)** and **Random Choice** are copied from the official leaderboard. **Category Definitions:** **FQA:** figure QA, **GPS:** geometry problem solving, **MWP:** math word problem, **TQA:** textbook QA, **VQA:** visual QA, **ALG:** algebraic, **ARI:** arithmetic, **GEO:** geometry, **LOG:** logical , **NUM:** numeric, **SCI:** scientific, **STA:** statistical. """ LEADERBOARD_MD['HallusionBench'] = """ [**HallusionBench**](https://github.com/tianyi-lab/HallusionBench) is a benchmark to evaluate hallucination of VLMs. It asks a set of visual questions with one original image and one modified image (the answers for a question can be different, considering the image content). **Examples in HallusionBench:** | Original Figure | Modified Figure | | ------------------------------------------------------------ | ------------------------------------------------------------ | | ![](http://opencompass.openxlab.space/utils/Hallu0.png) | ![](http://opencompass.openxlab.space/utils/Hallu1.png) | | **Q1.** Is the right orange circle the same size as the left orange circle? **A1. Yes** | **Q1.** Is the right orange circle the same size as the left orange circle? **A1. No** | | **Q2.** Is the right orange circle larger than the left orange circle? **A2. No** | **Q2.** Is the right orange circle larger than the left orange circle? **A2. Yes** | | **Q3.** Is the right orange circle smaller than the left orange circle? **A3. No** | **Q3.** Is the right orange circle smaller than the left orange circle? **A3. No** | **Metrics**: >- aAcc: The overall accuracy of **all** atomic questions. > >- qAcc: The mean accuracy of unique **questions**. One question can be asked multiple times with different figures, we consider VLM correctly solved a unique question only if it succeeds in all pairs for this unique question. >- fAcc: The mean accuracy of all **figures**. One figure is associated with multiple questions, we consider VLM correct on a figure only if it succeeds to solve all questions of this figure. **Evaluation Setting**: > 1. **No-visual** Questions (questions asked without the associated figure) in HallusionBench are **skipped** during evaluation. > 2. When we failed to extract Yes / No from the VLM prediction, we adopt **GPT-3.5-Turbo-0613** as the answer extractor. > 3. We report aAcc, qAcc, and fAcc for all evaluated VLMs. ## HallusionBench Evaluation Results """ LEADERBOARD_MD['LLaVABench'] = """ ## LLaVABench Evaluation Results - In LLaVABench Evaluation, we use GPT-4-Turbo (gpt-4-1106-preview) as the judge LLM to assign scores to the VLM outputs. We only perform the evaluation once due to the limited variance among results of multiple evaluation pass originally reported. - No specific prompt template adopted for **ALL VLMs**. - We also include the official results (obtained by gpt-4-0314) for applicable models. """ LEADERBOARD_MD['COCO_VAL'] = """ ## COCO Caption Results - By default, we evaluate COCO Caption Validation set (5000 samples), and report the following metrics: `BLEU-1, BLEU-4, CIDEr, ROUGE-L - We use the following prompt to evaluate all VLMs: `Please describe this image in general. Directly provide the description, do not include prefix like "This image depicts". ` - **No specific prompt is adopted for all VLMs.** """ LEADERBOARD_MD['ScienceQA_VAL'] = """ # ScienceQA Evaluation Results - We benchmark the **image** subset of ScienceQA validation and test set, and report the Top-1 accuracy. - During evaluation, we use `GPT-3.5-Turbo-0613` as the choice extractor for all VLMs if the choice can not be extracted via heuristic matching. **Zero-shot** inference is adopted. """ LEADERBOARD_MD['ScienceQA_TEST'] = LEADERBOARD_MD['ScienceQA_VAL'] from urllib.request import urlopen def load_results(): data = json.loads(urlopen(URL).read()) return data def nth_large(val, vals): return sum([1 for v in vals if v > val]) + 1 def format_timestamp(timestamp): return timestamp[:2] + '.' + timestamp[2:4] + '.' + timestamp[4:6] + ' ' + timestamp[6:8] + ':' + timestamp[8:10] + ':' + timestamp[10:12] def model_size_flag(sz, FIELDS): if pd.isna(sz) and 'Unknown' in FIELDS: return True if pd.isna(sz): return False if '<10B' in FIELDS and sz < 10: return True if '10B-20B' in FIELDS and sz >= 10 and sz < 20: return True if '20B-40B' in FIELDS and sz >= 20 and sz < 40: return True if '>40B' in FIELDS and sz >= 40: return True return False def model_type_flag(line, FIELDS): if 'OpenSource' in FIELDS and line['OpenSource'] == 'Yes': return True if 'API' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'Yes': return True if 'Proprietary' in FIELDS and line['OpenSource'] == 'No' and line['Verified'] == 'No': return True return False def BUILD_L1_DF(results, fields): res = defaultdict(list) for i, m in enumerate(results): item = results[m] meta = item['META'] for k in META_FIELDS: if k == 'Parameters (B)': param = meta['Parameters'] res[k].append(float(param.replace('B', '')) if param != '' else None) elif k == 'Method': name, url = meta['Method'] res[k].append(f'{name}') else: res[k].append(meta[k]) scores, ranks = [], [] for d in fields: res[d].append(item[d]['Overall']) if d == 'MME': scores.append(item[d]['Overall'] / 28) else: scores.append(item[d]['Overall']) ranks.append(nth_large(item[d]['Overall'], [x[d]['Overall'] for x in results.values()])) res['Avg Score'].append(round(np.mean(scores), 1)) res['Avg Rank'].append(round(np.mean(ranks), 2)) df = pd.DataFrame(res) df = df.sort_values('Avg Rank') check_box = {} check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model'] check_box['required'] = ['Avg Score', 'Avg Rank'] check_box['all'] = check_box['required'] + ['OpenSource', 'Verified'] + fields type_map = defaultdict(lambda: 'number') type_map['Method'] = 'html' type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str' check_box['type_map'] = type_map return df, check_box def BUILD_L2_DF(results, dataset): res = defaultdict(list) fields = list(list(results.values())[0][dataset].keys()) non_overall_fields = [x for x in fields if 'Overall' not in x] overall_fields = [x for x in fields if 'Overall' in x] if dataset == 'MME': non_overall_fields = [x for x in non_overall_fields if not listinstr(['Perception', 'Cognition'], x)] overall_fields = overall_fields + ['Perception', 'Cognition'] for m in results: item = results[m] meta = item['META'] for k in META_FIELDS: if k == 'Parameters (B)': param = meta['Parameters'] res[k].append(float(param.replace('B', '')) if param != '' else None) elif k == 'Method': name, url = meta['Method'] res[k].append(f'{name}') else: res[k].append(meta[k]) fields = [x for x in fields] for d in non_overall_fields: res[d].append(item[dataset][d]) for d in overall_fields: res[d].append(item[dataset][d]) df = pd.DataFrame(res) all_fields = overall_fields + non_overall_fields # Use the first 5 non-overall fields as required fields required_fields = overall_fields if len(overall_fields) else non_overall_fields[:5] if 'Overall' in overall_fields: df = df.sort_values('Overall') df = df.iloc[::-1] check_box = {} check_box['essential'] = ['Method', 'Parameters (B)', 'Language Model', 'Vision Model'] check_box['required'] = required_fields check_box['all'] = all_fields type_map = defaultdict(lambda: 'number') type_map['Method'] = 'html' type_map['Language Model'] = type_map['Vision Model'] = type_map['OpenSource'] = type_map['Verified'] = 'str' check_box['type_map'] = type_map return df, check_box