import os from glob import glob import cv2 import numpy as np from PIL import Image import torch from torchvision import transforms import gradio as gr import spaces from gradio_imageslider import ImageSlider torch.jit.script = lambda f: f from models.birefnet import BiRefNet from config import Config config = Config() device = config.device def array_to_pil_image(image, size=(1024, 1024)): image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR) image = Image.fromarray(image).convert('RGB') return image class ImagePreprocessor(): def __init__(self, resolution=(1024, 1024)) -> None: self.transform_image = transforms.Compose([ # transforms.Resize(resolution), # 1. keep consistent with the cv2.resize used in training 2. redundant with that in path_to_image() transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) def proc(self, image): image = self.transform_image(image) return image model = BiRefNet(bb_pretrained=False) state_dict = ['./BiRefNet_ep580.pth', 'BiRefNet-massive-epoch_240.pth'][-1] if os.path.exists(state_dict): birefnet_dict = torch.load(state_dict, map_location="cpu") unwanted_prefix = '_orig_mod.' for k, v in list(birefnet_dict.items()): if k.startswith(unwanted_prefix): birefnet_dict[k[len(unwanted_prefix):]] = birefnet_dict.pop(k) model.load_state_dict(birefnet_dict) model = model.to(device) model.eval() # def predict(image_1, image_2): # images = [image_1, image_2] @spaces.GPU def predict(image, resolution): resolution = f"{image.shape[1]}x{image.shape[0]}" if resolution == '' else resolution # Image is a RGB numpy array. resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')] images = [image] image_shapes = [image.shape[:2] for image in images] images = [array_to_pil_image(image, resolution) for image in images] image_preprocessor = ImagePreprocessor(resolution=resolution) images_proc = [] for image in images: images_proc.append(image_preprocessor.proc(image)) images_proc = torch.cat([image_proc.unsqueeze(0) for image_proc in images_proc]) with torch.no_grad(): scaled_preds_tensor = model(images_proc.to(device))[-1].sigmoid() # BiRefNet needs an sigmoid activation outside the forward. preds = [] for image_shape, pred_tensor in zip(image_shapes, scaled_preds_tensor): if device == 'cuda': pred_tensor = pred_tensor.cpu() preds.append(torch.nn.functional.interpolate(pred_tensor.unsqueeze(0), size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy()) image_preds = [] for image, pred in zip(images, preds): image = image.resize(pred.shape[::-1]) pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1) image_preds.append((pred * image).astype(np.uint8)) return image, image_preds[0] examples = [[_] for _ in glob('materials/examples/*')][:] # Add the option of resolution in a text box. for idx_example, example in enumerate(examples): examples[idx_example].append('1024x1024') examples.append(examples[-1].copy()) examples[-1][1] = '512x512' demo = gr.Interface( fn=predict, inputs=['image', gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `512x512`. Higher resolutions can be much slower for inference.", label="Resolution")], outputs=ImageSlider(), examples=examples, title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`', description=('Upload a picture, our model will give you the binary maps of the highly accurate segmentation of the salient objects in it. :)' '\nThe resolution used in our training was `1024x1024`, which is too much burden for the huggingface free spaces like this one (cost nearly 40s). Please set resolution as more than `768x768` for images with many texture details to obtain good results!\n Ours codes can be found at https://github.com/ZhengPeng7/BiRefNet.') ) demo.launch(debug=True)