import os import sys from http.server import HTTPServer, SimpleHTTPRequestHandler from multiprocessing import Process import subprocess from transformers import RobertaForSequenceClassification, RobertaTokenizer import json import fire import torch from urllib.parse import urlparse, unquote model: RobertaForSequenceClassification = None tokenizer: RobertaTokenizer = None device: str = None def log(*args): print(f"[{os.environ.get('RANK', '')}]", *args, file=sys.stderr) class RequestHandler(SimpleHTTPRequestHandler): def do_GET(self): query = unquote(urlparse(self.path).query) if not query: self.begin_content('text/html') html = os.path.join(os.path.dirname(__file__), 'index.html') self.wfile.write(open(html).read().encode()) return self.begin_content('application/json;charset=UTF-8') tokens = tokenizer.encode(query) all_tokens = len(tokens) tokens = tokens[:tokenizer.max_len - 2] used_tokens = len(tokens) tokens = torch.tensor([tokenizer.bos_token_id] + tokens + [tokenizer.eos_token_id]).unsqueeze(0) mask = torch.ones_like(tokens) with torch.no_grad(): logits = model(tokens.to(device), attention_mask=mask.to(device))[0] probs = logits.softmax(dim=-1) fake, real = probs.detach().cpu().flatten().numpy().tolist() self.wfile.write(json.dumps(dict( all_tokens=all_tokens, used_tokens=used_tokens, real_probability=real, fake_probability=fake )).encode()) def begin_content(self, content_type): self.send_response(200) self.send_header('Content-Type', content_type) self.send_header('Access-Control-Allow-Origin', '*') self.end_headers() def log_message(self, format, *args): log(format % args) def serve_forever(server, model, tokenizer, device): log('Process has started; loading the model ...') globals()['model'] = model.to(device) globals()['tokenizer'] = tokenizer globals()['device'] = device log('Ready to serve') server.serve_forever() def main(checkpoint, port=8080, device='cuda' if torch.cuda.is_available() else 'cpu'): if checkpoint.startswith('gs://'): print(f'Downloading {checkpoint}', file=sys.stderr) subprocess.check_output(['gsutil', 'cp', checkpoint, '.']) checkpoint = os.path.basename(checkpoint) assert os.path.isfile(checkpoint) print(f'Loading checkpoint from {checkpoint}') data = torch.load(checkpoint, map_location='cpu') model_name = 'roberta-large' if data['args']['large'] else 'roberta-base' model = RobertaForSequenceClassification.from_pretrained(model_name) tokenizer = RobertaTokenizer.from_pretrained(model_name) model.load_state_dict(data['model_state_dict']) model.eval() print(f'Starting HTTP server on port {port}', file=sys.stderr) server = HTTPServer(('0.0.0.0', port), RequestHandler) # avoid calling CUDA API before forking; doing so in a subprocess is fine. num_workers = int(subprocess.check_output(['python', '-c', 'import torch; print(torch.cuda.device_count())'])) if num_workers <= 1: serve_forever(server, model, tokenizer, device) else: print(f'Launching {num_workers} worker processes...') subprocesses = [] for i in range(num_workers): os.environ['RANK'] = f'{i}' os.environ['CUDA_VISIBLE_DEVICES'] = f'{i}' process = Process(target=serve_forever, args=(server, model, tokenizer, device)) process.start() subprocesses.append(process) del os.environ['RANK'] del os.environ['CUDA_VISIBLE_DEVICES'] for process in subprocesses: process.join() if __name__ == '__main__': fire.Fire(main)