import pandas as pd import numpy as np from datasets import load_dataset from about import results_repo from about import LB_COLS0 def make_user_clickable(name): link =f'https://huggingface.co/{name}' return f'{name}' def make_tag_clickable(tag): return f'link' def fetch_dataset_df(): dset = load_dataset(results_repo, split='train', download_mode="force_redownload") full_df = dset.to_pandas() assert all( col in full_df.columns for col in LB_COLS0 ), f"Expected columns {LB_COLS0} not found in {full_df.columns}. Missing columns: {set(LB_COLS0) - set(full_df.columns)}" df = full_df.copy() df = df[df["user"] != "test"].copy() df["submission_time"] = pd.to_datetime(df["submission_time"], errors="coerce") df = df.dropna(subset=["submission_time"]) # Get the most recent submission per user & endpoint latest = ( df.sort_values("submission_time") .drop_duplicates(subset=["endpoint", "user"], keep="last") .sort_values(["endpoint", "user"]) .reset_index(drop=True) ) latest.rename(columns={"submission_time": "submission time"}, inplace=True) return latest def metrics_per_ep(pred, true): from scipy.stats import spearmanr, kendalltau from sklearn.metrics import mean_absolute_error, r2_score mae = mean_absolute_error(true, pred) rae = mae / np.mean(np.abs(true - np.mean(true))) if np.nanstd(true) == 0: r2=np.nan else: r2 = r2_score(true, pred) spr, _ = spearmanr(true, pred) ktau, _ = kendalltau(true, pred) return mae, rae, r2, spr, ktau