import gradio as gr import pytz import os import matplotlib.pyplot as plt from datetime import datetime from markdown import instructions_markdown, faq_markdown from fsrs4anki_optimizer import Optimizer from pathlib import Path from utilities import cleanup def get_w_markdown(w): return f""" # Updated Parameters Copy and paste these as shown in step 5 of the instructions: `{w}` Check out the Analysis tab for more detailed information.""" def anki_optimizer(file: gr.File, timezone, next_day_starts_at, revlog_start_date, requestRetention, progress=gr.Progress(track_tqdm=True)): if file is None or (not file.name.endswith(".apkg") and not file.name.endswith(".colpkg")): raise ValueError("Please upload a deck/collection file.") if timezone == "": raise ValueError("Please select a timezone.") now = datetime.now() files = ['prediction.tsv', 'revlog.csv', 'revlog_history.tsv', 'stability_for_analysis.tsv', 'expected_time.csv', 'evaluation.tsv'] prefix = now.strftime(f'%Y_%m_%d_%H_%M_%S') suffix = file.name.split('/')[-1].replace(".", "_").replace("@", "_") proj_dir = Path(f'projects/{prefix}/{suffix}') proj_dir.mkdir(parents=True, exist_ok=True) os.chdir(proj_dir) print(os.getcwd()) optimizer = Optimizer() optimizer.anki_extract(file.name) analysis_markdown = optimizer.create_time_series(timezone, revlog_start_date, next_day_starts_at).replace("\n", "\n\n") optimizer.define_model() optimizer.train() w_markdown = get_w_markdown(optimizer.w) optimizer.predict_memory_states() difficulty_distribution = optimizer.difficulty_distribution.to_string().replace("\n", "\n\n") plot_output = optimizer.find_optimal_retention()[0] suggested_retention_markdown = f"""# Suggested Retention: `{optimizer.optimal_retention:.2f}`""" rating_markdown = optimizer.preview(requestRetention).replace("\n", "\n\n") loss_before, loss_after = optimizer.evaluate() loss_markdown = f""" **Loss before training**: {loss_before} **Loss after training**: {loss_after} """ # optimizer.calibration_graph() # optimizer.compare_with_sm2() markdown_out = f"""{suggested_retention_markdown} # Loss Information {loss_markdown} # Difficulty Distribution {difficulty_distribution} # Ratings {rating_markdown} """ os.chdir('../../..') print(os.getcwd()) files_out = [proj_dir / file for file in files if (proj_dir / file).exists()] cleanup(proj_dir, files) plt.close('all') return w_markdown, markdown_out, plot_output, files_out description = """ # FSRS4Anki Optimizer App - v3.24.1 Based on the [tutorial](https://medium.com/@JarrettYe/how-to-use-the-next-generation-spaced-repetition-algorithm-fsrs-on-anki-5a591ca562e2) of [Jarrett Ye](https://github.com/L-M-Sherlock). This application can give you personalized anki parameters without having to code. Read the `Instructions` if its your first time using the app. """ with gr.Blocks() as demo: with gr.Tab("FSRS4Anki Optimizer"): with gr.Box(): gr.Markdown(description) with gr.Box(): with gr.Row(): with gr.Column(): file = gr.File(label='Review Logs (Step 1)') with gr.Column(): next_day_starts_at = gr.Number(value=4, label="Next Day Starts at (Step 2)", precision=0) timezone = gr.Dropdown(label="Timezone (Step 3.1)", choices=pytz.all_timezones) with gr.Accordion(label="Advanced Settings (Step 3.2)", open=False): requestRetention = gr.Number(value=.9, label="Desired Retention: Recommended to set between 0.8 0.9") revlog_start_date = gr.Textbox(value="2006-10-05", label="Revlog Start Date: Optimize review logs after this date.") with gr.Row(): btn_plot = gr.Button('Optimize your Anki!') with gr.Row(): w_output = gr.Markdown() with gr.Tab("Instructions"): with gr.Box(): gr.Markdown(instructions_markdown) with gr.Tab("Analysis"): with gr.Row(): markdown_output = gr.Markdown() with gr.Column(): plot_output = gr.Plot() files_output = gr.Files(label="Analysis Files") with gr.Tab("FAQ"): gr.Markdown(faq_markdown) btn_plot.click(anki_optimizer, inputs=[file, timezone, next_day_starts_at, revlog_start_date, requestRetention], outputs=[w_output, markdown_output, plot_output, files_output]) demo.queue().launch(show_error=True)