import numpy as np import torch from torch import nn init_w = [1, 1, 5, -0.5, -0.5, 0.2, 1.4, -0.12, 0.8, 2, -0.2, 0.2, 1] ''' w[0]: initial_stability_for_again_answer w[1]: initial_stability_step_per_rating w[2]: initial_difficulty_for_good_answer w[3]: initial_difficulty_step_per_rating w[4]: next_difficulty_step_per_rating w[5]: next_difficulty_reversion_to_mean_speed (used to avoid ease hell) w[6]: next_stability_factor_after_success w[7]: next_stability_stabilization_decay_after_success w[8]: next_stability_retrievability_gain_after_success w[9]: next_stability_factor_after_failure w[10]: next_stability_difficulty_decay_after_success w[11]: next_stability_stability_gain_after_failure w[12]: next_stability_retrievability_gain_after_failure For more details about the parameters, please see: https://github.com/open-spaced-repetition/fsrs4anki/wiki/Free-Spaced-Repetition-Scheduler ''' class FSRS(nn.Module): def __init__(self, w): super(FSRS, self).__init__() self.w = nn.Parameter(torch.FloatTensor(w)) self.zero = torch.FloatTensor([0.0]) def forward(self, x, s, d): ''' :param x: [review interval, review response] :param s: stability :param d: difficulty :return: ''' if torch.equal(s, self.zero): # first learn, init memory states new_s = self.w[0] + self.w[1] * (x[1] - 1) new_d = self.w[2] + self.w[3] * (x[1] - 3) new_d = new_d.clamp(1, 10) else: r = torch.exp(np.log(0.9) * x[0] / s) new_d = d + self.w[4] * (x[1] - 3) new_d = self.mean_reversion(self.w[2], new_d) new_d = new_d.clamp(1, 10) # recall if x[1] > 1: new_s = s * (1 + torch.exp(self.w[6]) * (11 - new_d) * torch.pow(s, self.w[7]) * (torch.exp((1 - r) * self.w[8]) - 1)) # forget else: new_s = self.w[9] * torch.pow(new_d, self.w[10]) * torch.pow( s, self.w[11]) * torch.exp((1 - r) * self.w[12]) return new_s, new_d def loss(self, s, t, r): return - (r * np.log(0.9) * t / s + (1 - r) * torch.log(1 - torch.exp(np.log(0.9) * t / s))) def mean_reversion(self, init, current): return self.w[5] * init + (1-self.w[5]) * current class WeightClipper(object): def __init__(self, frequency=1): self.frequency = frequency def __call__(self, module): if hasattr(module, 'w'): w = module.w.data w[0] = w[0].clamp(0.1, 10) w[1] = w[1].clamp(0.1, 5) w[2] = w[2].clamp(1, 10) w[3] = w[3].clamp(-5, -0.1) w[4] = w[4].clamp(-5, -0.1) w[5] = w[5].clamp(0, 0.5) w[6] = w[6].clamp(0, 2) w[7] = w[7].clamp(-0.2, -0.01) w[8] = w[8].clamp(0.01, 1.5) w[9] = w[9].clamp(0.5, 5) w[10] = w[10].clamp(-2, -0.01) w[11] = w[11].clamp(0.01, 0.9) w[12] = w[12].clamp(0.01, 2) module.w.data = w def lineToTensor(line): ivl = line[0].split(',') response = line[1].split(',') tensor = torch.zeros(len(response), 2) for li, response in enumerate(response): tensor[li][0] = int(ivl[li]) tensor[li][1] = int(response) return tensor class Collection: def __init__(self, w): self.model = FSRS(w) def states(self, t_history, r_history): with torch.no_grad(): line_tensor = lineToTensor(list(zip([t_history], [r_history]))[0]) output_t = [(self.model.zero, self.model.zero)] for input_t in line_tensor: output_t.append(self.model(input_t, *output_t[-1])) return output_t[-1]