from PIL import Image import numpy as np import torch from torchvision import transforms, models from onnx import numpy_helper import os import onnxruntime as rt from matplotlib.colors import hsv_to_rgb import cv2 import gradio as gr import matplotlib.pyplot as plt import matplotlib.patches as patches import pycocotools.mask as mask_util def preprocess(image): # Resize ratio = 800.0 / min(image.size[0], image.size[1]) image = image.resize((int(ratio * image.size[0]), int(ratio * image.size[1])), Image.BILINEAR) # Convert to BGR image = np.array(image)[:, :, [2, 1, 0]].astype('float32') # HWC -> CHW image = np.transpose(image, [2, 0, 1]) # Normalize mean_vec = np.array([102.9801, 115.9465, 122.7717]) for i in range(image.shape[0]): image[i, :, :] = image[i, :, :] - mean_vec[i] # Pad to be divisible of 32 import math padded_h = int(math.ceil(image.shape[1] / 32) * 32) padded_w = int(math.ceil(image.shape[2] / 32) * 32) padded_image = np.zeros((3, padded_h, padded_w), dtype=np.float32) padded_image[:, :image.shape[1], :image.shape[2]] = image image = padded_image return image # Start from ORT 1.10, ORT requires explicitly setting the providers parameter if you want to use execution providers # other than the default CPU provider (as opposed to the previous behavior of providers getting set/registered by default # based on the build flags) when instantiating InferenceSession. # For example, if NVIDIA GPU is available and ORT Python package is built with CUDA, then call API as following: # onnxruntime.InferenceSession(path/to/model, providers=['CUDAExecutionProvider']) os.system("wget https://github.com/AK391/models/raw/main/vision/object_detection_segmentation/mask-rcnn/model/MaskRCNN-10.onnx") sess = rt.InferenceSession("MaskRCNN-10.onnx") outputs = sess.get_outputs() classes = [line.rstrip('\n') for line in open('coco_classes.txt')] def display_objdetect_image(image, boxes, labels, scores, masks, score_threshold=0.7): # Resize boxes ratio = 800.0 / min(image.size[0], image.size[1]) boxes /= ratio _, ax = plt.subplots(1, figsize=(12,9)) image = np.array(image) for mask, box, label, score in zip(masks, boxes, labels, scores): # Showing boxes with score > 0.7 if score <= score_threshold: continue # Finding contour based on mask mask = mask[0, :, :, None] int_box = [int(i) for i in box] mask = cv2.resize(mask, (int_box[2]-int_box[0]+1, int_box[3]-int_box[1]+1)) mask = mask > 0.5 im_mask = np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8) x_0 = max(int_box[0], 0) x_1 = min(int_box[2] + 1, image.shape[1]) y_0 = max(int_box[1], 0) y_1 = min(int_box[3] + 1, image.shape[0]) mask_y_0 = max(y_0 - box[1], 0) mask_y_1 = mask_y_0 + y_1 - y_0 mask_x_0 = max(x_0 - box[0], 0) mask_x_1 = mask_x_0 + x_1 - x_0 im_mask[y_0:y_1, x_0:x_1] = mask[ mask_y_0 : mask_y_1, mask_x_0 : mask_x_1 ] im_mask = im_mask[:, :, None] # OpenCV version 4.x contours, hierarchy = cv2.findContours( im_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE ) image = cv2.drawContours(image, contours, -1, 25, 3) rect = patches.Rectangle((box[0], box[1]), box[2] - box[0], box[3] - box[1], linewidth=1, edgecolor='b', facecolor='none') ax.annotate(classes[label] + ':' + str(np.round(score, 2)), (box[0], box[1]), color='w', fontsize=12) ax.add_patch(rect) ax.imshow(image) plt.axis('off') plt.savefig('out.png', bbox_inches='tight') def inference(img): input_image = Image.open(img) orig_tensor = np.asarray(input_image) input_tensor = preprocess(input_image) output_names = list(map(lambda output: output.name, outputs)) input_name = sess.get_inputs()[0].name boxes, labels, scores, masks = sess.run(output_names, {input_name: input_tensor}) display_objdetect_image(input_image, boxes, labels, scores, masks) return 'out.png' title="Mask R-CNN" description="This model is a real-time neural network for object instance segmentation that detects 80 different classes." examples=[["examplemask-rcnn.jpeg"]] gr.Interface(inference,gr.inputs.Image(type="filepath"),gr.outputs.Image(type="file"),title=title,description=description,examples=examples).launch(enable_queue=True)