from PIL import Image import numpy as np import torch from torchvision import transforms, models from onnx import numpy_helper import os import onnxruntime as rt from matplotlib.colors import hsv_to_rgb import cv2 import gradio as gr preprocess = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # Start from ORT 1.10, ORT requires explicitly setting the providers parameter if you want to use execution providers # other than the default CPU provider (as opposed to the previous behavior of providers getting set/registered by default # based on the build flags) when instantiating InferenceSession. # For example, if NVIDIA GPU is available and ORT Python package is built with CUDA, then call API as following: # onnxruntime.InferenceSession(path/to/model, providers=['CUDAExecutionProvider']) os.system("wget https://github.com/AK391/models/raw/main/vision/object_detection_segmentation/fcn/model/fcn-resnet101-11.onnx") sess = rt.InferenceSession("fcn-resnet101-11.onnx") outputs = sess.get_outputs() classes = [line.rstrip('\n') for line in open('voc_classes.txt')] num_classes = len(classes) def get_palette(): # prepare and return palette palette = [0] * num_classes * 3 for hue in range(num_classes): if hue == 0: # Background color colors = (0, 0, 0) else: colors = hsv_to_rgb((hue / num_classes, 0.75, 0.75)) for i in range(3): palette[hue * 3 + i] = int(colors[i] * 255) return palette def colorize(labels): # generate colorized image from output labels and color palette result_img = Image.fromarray(labels).convert('P', colors=num_classes) result_img.putpalette(get_palette()) return np.array(result_img.convert('RGB')) def visualize_output(image, output): assert(image.shape[0] == output.shape[1] and \ image.shape[1] == output.shape[2]) # Same height and width assert(output.shape[0] == num_classes) # get classification labels raw_labels = np.argmax(output, axis=0).astype(np.uint8) # comput confidence score confidence = float(np.max(output, axis=0).mean()) # generate segmented image result_img = colorize(raw_labels) # generate blended image blended_img = cv2.addWeighted(image[:, :, ::-1], 0.5, result_img, 0.5, 0) result_img = Image.fromarray(result_img) blended_img = Image.fromarray(blended_img) return confidence, result_img, blended_img, raw_labels def inference(img): input_image = Image.open(img) orig_tensor = np.asarray(input_image) input_tensor = preprocess(input_image) input_tensor = input_tensor.unsqueeze(0) input_tensor = input_tensor.detach().cpu().numpy() output_names = list(map(lambda output: output.name, outputs)) input_name = sess.get_inputs()[0].name detections = sess.run(output_names, {input_name: input_tensor}) output, aux = detections conf, result_img, blended_img, _ = visualize_output(orig_tensor, output[0]) return blended_img title="Fully Convolutional Network" description="FCNs are a model for real-time neural network for class-wise image segmentation. As the name implies, every weight layer in the network is convolutional. The final layer has the same height/width as the input image, making FCNs a useful tool for doing dense pixel-wise predictions without a significant amount of postprocessing. Being fully convolutional also provides great flexibility in the resolutions this model can handle. This specific model detects 20 different classes. The models have been pre-trained on the COCO train2017 dataset on this class subset." examples=[["examplefcn.png"]] gr.Interface(inference,gr.inputs.Image(type="filepath"),gr.outputs.Image(type="pil"),title=title,description=description,examples=examples).launch(enable_queue=True)