import numpy as np import tensorflow as tf import cv2 import keras import PIL from keras import Sequential from keras.applications.resnet50 import ResNet50 from keras.layers import Flatten, Dense class PaceModel: """ The pace model which uses ResNet50's architecture as base and builds upon by adding further layers to determine the pace of an image. """ def __init__(self, height, width, channels, resnet50_tf_model_weights_path, pace_model_weights_path): self.resnet_model = Sequential() self.height = height self.width = width self.channels = channels self.class_names = ["Fast", "Medium", "Slow"] self.resnet50_tf_model_weights_path = resnet50_tf_model_weights_path self.pace_model_weights_path = pace_model_weights_path self.create_base_model() self.create_architecture() def create_base_model(self): self.base_model = ResNet50( include_top=False, input_shape=(self.height, self.width, self.channels), pooling="avg", classes=211, weights="imagenet" ) self.base_model.load_weights(self.resnet50_tf_model_weights_path) for layer in self.base_model.layers: layer.trainable = False def create_architecture(self): self.resnet_model.add(self.base_model) self.resnet_model.add(Flatten()) self.resnet_model.add(Dense(1024, activation="relu")) self.resnet_model.add(Dense(256, activation="relu")) self.resnet_model.add(Dense(3, activation="softmax")) self.resnet_model.load_weights(self.pace_model_weights_path) def predict(self, input_image: PIL.Image.Image): np_image = np.array(input_image) resized_image = cv2.resize(np_image, (self.height, self.width)) image = np.expand_dims(resized_image, axis=0) prediction = self.resnet_model.predict(image) print(prediction, np.argmax(prediction)) return self.class_names[np.argmax(prediction)]