from fastai.vision.all import * from io import BytesIO import requests import streamlit as st """ # 分類花種 類別有櫻花 茶花 玫瑰 杜鵑 茉莉 梅花 康乃馨 向日葵 蘭花 牡丹 """ def predict(img): st.image(img, caption="Your image", use_column_width=True) pred, key, probs = learn_inf.predict(img) # st.write(learn_inf.predict(img)) f""" ## This **{'is ' if pred == 'Cherry blossoms' else 'is not'}** an Cherry blossoms . ### Rediction result: {pred} ### Probability of {pred}: {probs[key].item()*100: .2f}% """ path = "./" learn_inf = load_learner(path + "resnet34_stage-2-1.pkl") option = st.radio("", ["Upload Image", "Image URL"]) if option == "Upload Image": uploaded_file = st.file_uploader("Please upload an image.") if uploaded_file is not None: img = PILImage.create(uploaded_file) predict(img) else: url = st.text_input("Please input a url.") if url != "": try: response = requests.get(url) pil_img = PILImage.create(BytesIO(response.content)) predict(pil_img) except: st.text("Problem reading image from", url)