# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Decoder module library.""" import functools from typing import Any, Callable, Dict, Iterable, Mapping, Optional, Sequence, Tuple, Union from flax import linen as nn import jax.numpy as jnp from invariant_slot_attention.lib import utils from invariant_slot_attention.modules import misc Shape = Tuple[int] DType = Any Array = Any # jnp.ndarray ArrayTree = Union[Array, Iterable["ArrayTree"], Mapping[str, "ArrayTree"]] # pytype: disable=not-supported-yet ProcessorState = ArrayTree PRNGKey = Array NestedDict = Dict[str, Any] class SpatialBroadcastDecoder(nn.Module): """Spatial broadcast decoder for a set of slots (per frame).""" resolution: Sequence[int] backbone: Callable[[], nn.Module] pos_emb: Callable[[], nn.Module] early_fusion: bool = False # Fuse slot features before constructing targets. target_readout: Optional[Callable[[], nn.Module]] = None # Vmapped application of module, consumes time axis (axis=1). @functools.partial(utils.time_distributed, in_axes=(1, None)) @nn.compact def __call__(self, slots, train = False): batch_size, n_slots, n_features = slots.shape # Fold slot dim into batch dim. x = jnp.reshape(slots, (batch_size * n_slots, n_features)) # Spatial broadcast with position embedding. x = utils.spatial_broadcast(x, self.resolution) x = self.pos_emb()(x) # bb_features.shape = (batch_size * n_slots, h, w, c) bb_features = self.backbone()(x, train=train) spatial_dims = bb_features.shape[-3:-1] alpha_logits = nn.Dense( features=1, use_bias=True, name="alpha_logits")(bb_features) alpha_logits = jnp.reshape( alpha_logits, (batch_size, n_slots) + spatial_dims + (-1,)) alphas = nn.softmax(alpha_logits, axis=1) if not train: # Define intermediates for logging / visualization. self.sow("intermediates", "alphas", alphas) if self.early_fusion: # To save memory, fuse the slot features before predicting targets. # The final target output should be equivalent to the late fusion when # using linear prediction. bb_features = jnp.reshape( bb_features, (batch_size, n_slots) + spatial_dims + (-1,)) # Combine backbone features by alpha masks. bb_features = jnp.sum(bb_features * alphas, axis=1) targets_dict = self.target_readout()(bb_features, train) # pylint: disable=not-callable preds_dict = dict() for target_key, channels in targets_dict.items(): if self.early_fusion: # decoded_target.shape = (batch_size, h, w, c) after next line. decoded_target = channels else: # channels.shape = (batch_size, n_slots, h, w, c) channels = jnp.reshape( channels, (batch_size, n_slots) + (spatial_dims) + (-1,)) # masked_channels.shape = (batch_size, n_slots, h, w, c) masked_channels = channels * alphas # decoded_target.shape = (batch_size, h, w, c) decoded_target = jnp.sum(masked_channels, axis=1) # Combine target. preds_dict[target_key] = decoded_target if not train: # Define intermediates for logging / visualization. self.sow("intermediates", f"{target_key}_slots", channels) if not self.early_fusion: self.sow("intermediates", f"{target_key}_masked", masked_channels) self.sow("intermediates", f"{target_key}_combined", decoded_target) preds_dict["segmentations"] = jnp.argmax(alpha_logits, axis=1) return preds_dict class SiameseSpatialBroadcastDecoder(nn.Module): """Siamese spatial broadcast decoder for a set of slots (per frame). Similar to the decoders used in IODINE: https://arxiv.org/abs/1903.00450 and in Slot Attention: https://arxiv.org/abs/2006.15055. """ resolution: Sequence[int] backbone: Callable[[], nn.Module] pos_emb: Callable[[], nn.Module] pass_intermediates: bool = False alpha_only: bool = False # Predict only alpha masks. concat_attn: bool = False # Readout after backbone. target_readout_from_slots: bool = False target_readout: Optional[Callable[[], nn.Module]] = None early_fusion: bool = False # Fuse slot features before constructing targets. # Readout on slots. attribute_readout: Optional[Callable[[], nn.Module]] = None remove_background_attribute: bool = False attn_key: Optional[str] = None attn_width: Optional[int] = None # If True, expects slot embeddings to contain slot positions. relative_positions: bool = False # Slot positions and scales. relative_positions_and_scales: bool = False relative_positions_rotations_and_scales: bool = False # Vmapped application of module, consumes time axis (axis=1). @functools.partial(utils.time_distributed, in_axes=(1, None)) @nn.compact def __call__(self, slots, train = False): if self.remove_background_attribute and self.attribute_readout is None: raise NotImplementedError( "Background removal is only supported for attribute readout.") if self.relative_positions: # Assume slot positions were concatenated to slot embeddings. # E.g. an output of SlotAttentionTranslEquiv. slots, positions = slots[Ellipsis, :-2], slots[Ellipsis, -2:] # Reshape positions to [B * num_slots, 2] positions = positions.reshape( (positions.shape[0] * positions.shape[1], positions.shape[2])) elif self.relative_positions_and_scales: # Assume slot positions and scales were concatenated to slot embeddings. # E.g. an output of SlotAttentionTranslScaleEquiv. slots, positions, scales = (slots[Ellipsis, :-4], slots[Ellipsis, -4: -2], slots[Ellipsis, -2:]) positions = positions.reshape( (positions.shape[0] * positions.shape[1], positions.shape[2])) scales = scales.reshape( (scales.shape[0] * scales.shape[1], scales.shape[2])) elif self.relative_positions_rotations_and_scales: slots, positions, scales, rotm = (slots[Ellipsis, :-8], slots[Ellipsis, -8: -6], slots[Ellipsis, -6: -4], slots[Ellipsis, -4:]) positions = positions.reshape( (positions.shape[0] * positions.shape[1], positions.shape[2])) scales = scales.reshape( (scales.shape[0] * scales.shape[1], scales.shape[2])) rotm = rotm.reshape( rotm.shape[0] * rotm.shape[1], 2, 2) batch_size, n_slots, n_features = slots.shape preds_dict = {} # Fold slot dim into batch dim. x = jnp.reshape(slots, (batch_size * n_slots, n_features)) # Attribute readout. if self.attribute_readout is not None: if self.remove_background_attribute: slots = slots[:, 1:] attributes_dict = self.attribute_readout()(slots, train) # pylint: disable=not-callable preds_dict.update(attributes_dict) # Spatial broadcast with position embedding. # See https://arxiv.org/abs/1901.07017. x = utils.spatial_broadcast(x, self.resolution) if self.relative_positions: x = self.pos_emb()(inputs=x, slot_positions=positions) elif self.relative_positions_and_scales: x = self.pos_emb()(inputs=x, slot_positions=positions, slot_scales=scales) elif self.relative_positions_rotations_and_scales: x = self.pos_emb()( inputs=x, slot_positions=positions, slot_scales=scales, slot_rotm=rotm) else: x = self.pos_emb()(x) # bb_features.shape = (batch_size*n_slots, h, w, c) bb_features = self.backbone()(x, train=train) spatial_dims = bb_features.shape[-3:-1] alphas = nn.Dense(features=1, use_bias=True, name="alphas")(bb_features) alphas = jnp.reshape( alphas, (batch_size, n_slots) + spatial_dims + (-1,)) alphas_softmaxed = nn.softmax(alphas, axis=1) preds_dict["segmentation_logits"] = alphas preds_dict["segmentations"] = jnp.argmax(alphas, axis=1) # Define intermediates for logging. _ = misc.Identity(name="alphas_softmaxed")(alphas_softmaxed) if self.alpha_only or self.target_readout is None: assert alphas.shape[-1] == 1, "Alpha masks need to be one-dimensional." return preds_dict, {"segmentation_logits": alphas} if self.early_fusion: # To save memory, fuse the slot features before predicting targets. # The final target output should be equivalent to the late fusion when # using linear prediction. bb_features = jnp.reshape( bb_features, (batch_size, n_slots) + spatial_dims + (-1,)) # Combine backbone features by alpha masks. bb_features = jnp.sum(bb_features * alphas_softmaxed, axis=1) if self.target_readout_from_slots: targets_dict = self.target_readout()(slots, train) # pylint: disable=not-callable else: targets_dict = self.target_readout()(bb_features, train) # pylint: disable=not-callable targets_dict_new = dict() targets_dict_new["targets_masks"] = alphas_softmaxed targets_dict_new["targets_logits_masks"] = alphas for target_key, channels in targets_dict.items(): if self.early_fusion: # decoded_target.shape = (batch_size, h, w, c) after next line. decoded_target = channels else: # channels.shape = (batch_size, n_slots, h, w, c) after next line. channels = jnp.reshape( channels, (batch_size, n_slots) + (spatial_dims if not self.target_readout_from_slots else (1, 1)) + (-1,)) # masked_channels.shape = (batch_size, n_slots, h, w, c) at next line. masked_channels = channels * alphas_softmaxed # decoded_target.shape = (batch_size, h, w, c) after next line. decoded_target = jnp.sum(masked_channels, axis=1) # Combine target. targets_dict_new[target_key + "_channels"] = channels # Define intermediates for logging. _ = misc.Identity(name=f"{target_key}_channels")(channels) _ = misc.Identity(name=f"{target_key}_masked_channels")(masked_channels) targets_dict_new[target_key] = decoded_target # Define intermediates for logging. _ = misc.Identity(name=f"decoded_{target_key}")(decoded_target) preds_dict.update(targets_dict_new) return preds_dict