# coding=utf-8 # Copyright 2023 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Attention module library.""" import functools from typing import Any, Dict, Iterable, Mapping, Optional, Tuple, Union from flax import linen as nn import jax import jax.numpy as jnp from invariant_slot_attention.modules import misc Shape = Tuple[int] DType = Any Array = Any # jnp.ndarray ArrayTree = Union[Array, Iterable["ArrayTree"], Mapping[str, "ArrayTree"]] # pytype: disable=not-supported-yet ProcessorState = ArrayTree PRNGKey = Array NestedDict = Dict[str, Any] class SlotAttention(nn.Module): """Slot Attention module. Note: This module uses pre-normalization by default. """ num_iterations: int = 1 qkv_size: Optional[int] = None mlp_size: Optional[int] = None epsilon: float = 1e-8 num_heads: int = 1 @nn.compact def __call__(self, slots, inputs, padding_mask = None, train = False): """Slot Attention module forward pass.""" del padding_mask, train # Unused. qkv_size = self.qkv_size or slots.shape[-1] head_dim = qkv_size // self.num_heads dense = functools.partial(nn.DenseGeneral, axis=-1, features=(self.num_heads, head_dim), use_bias=False) # Shared modules. dense_q = dense(name="general_dense_q_0") layernorm_q = nn.LayerNorm() inverted_attention = InvertedDotProductAttention( norm_type="mean", multi_head=self.num_heads > 1) gru = misc.GRU() if self.mlp_size is not None: mlp = misc.MLP(hidden_size=self.mlp_size, layernorm="pre", residual=True) # type: ignore # inputs.shape = (..., n_inputs, inputs_size). inputs = nn.LayerNorm()(inputs) # k.shape = (..., n_inputs, slot_size). k = dense(name="general_dense_k_0")(inputs) # v.shape = (..., n_inputs, slot_size). v = dense(name="general_dense_v_0")(inputs) # Multiple rounds of attention. for _ in range(self.num_iterations): # Inverted dot-product attention. slots_n = layernorm_q(slots) q = dense_q(slots_n) # q.shape = (..., n_inputs, slot_size). updates = inverted_attention(query=q, key=k, value=v) # Recurrent update. slots = gru(slots, updates) # Feedforward block with pre-normalization. if self.mlp_size is not None: slots = mlp(slots) return slots class InvertedDotProductAttention(nn.Module): """Inverted version of dot-product attention (softmax over query axis).""" norm_type: Optional[str] = "mean" # mean, layernorm, or None multi_head: bool = False epsilon: float = 1e-8 dtype: DType = jnp.float32 precision: Optional[jax.lax.Precision] = None return_attn_weights: bool = False @nn.compact def __call__(self, query, key, value, train = False): """Computes inverted dot-product attention. Args: query: Queries with shape of `[batch..., q_num, qk_features]`. key: Keys with shape of `[batch..., kv_num, qk_features]`. value: Values with shape of `[batch..., kv_num, v_features]`. train: Indicating whether we're training or evaluating. Returns: Output of shape `[batch_size..., n_queries, v_features]` """ del train # Unused. attn = GeneralizedDotProductAttention( inverted_attn=True, renormalize_keys=True if self.norm_type == "mean" else False, epsilon=self.epsilon, dtype=self.dtype, precision=self.precision, return_attn_weights=True) # Apply attention mechanism. output, attn = attn(query=query, key=key, value=value) if self.multi_head: # Multi-head aggregation. Equivalent to concat + dense layer. output = nn.DenseGeneral(features=output.shape[-1], axis=(-2, -1))(output) else: # Remove head dimension. output = jnp.squeeze(output, axis=-2) attn = jnp.squeeze(attn, axis=-3) if self.norm_type == "layernorm": output = nn.LayerNorm()(output) if self.return_attn_weights: return output, attn return output class GeneralizedDotProductAttention(nn.Module): """Multi-head dot-product attention with customizable normalization axis. This module supports logging of attention weights in a variable collection. """ dtype: DType = jnp.float32 precision: Optional[jax.lax.Precision] = None epsilon: float = 1e-8 inverted_attn: bool = False renormalize_keys: bool = False attn_weights_only: bool = False return_attn_weights: bool = False @nn.compact def __call__(self, query, key, value, train = False, **kwargs ): """Computes multi-head dot-product attention given query, key, and value. Args: query: Queries with shape of `[batch..., q_num, num_heads, qk_features]`. key: Keys with shape of `[batch..., kv_num, num_heads, qk_features]`. value: Values with shape of `[batch..., kv_num, num_heads, v_features]`. train: Indicating whether we're training or evaluating. **kwargs: Additional keyword arguments are required when used as attention function in nn.MultiHeadDotProductAttention, but they will be ignored here. Returns: Output of shape `[batch..., q_num, num_heads, v_features]`. """ assert query.ndim == key.ndim == value.ndim, ( "Queries, keys, and values must have the same rank.") assert query.shape[:-3] == key.shape[:-3] == value.shape[:-3], ( "Query, key, and value batch dimensions must match.") assert query.shape[-2] == key.shape[-2] == value.shape[-2], ( "Query, key, and value num_heads dimensions must match.") assert key.shape[-3] == value.shape[-3], ( "Key and value cardinality dimensions must match.") assert query.shape[-1] == key.shape[-1], ( "Query and key feature dimensions must match.") if kwargs.get("bias") is not None: raise NotImplementedError( "Support for masked attention is not yet implemented.") if "dropout_rate" in kwargs: if kwargs["dropout_rate"] > 0.: raise NotImplementedError("Support for dropout is not yet implemented.") # Temperature normalization. qk_features = query.shape[-1] query = query / jnp.sqrt(qk_features).astype(self.dtype) # attn.shape = (batch..., num_heads, q_num, kv_num) attn = jnp.einsum("...qhd,...khd->...hqk", query, key, precision=self.precision) if self.inverted_attn: attention_axis = -2 # Query axis. else: attention_axis = -1 # Key axis. # Softmax normalization (by default over key axis). attn = jax.nn.softmax(attn, axis=attention_axis).astype(self.dtype) # Defines intermediate for logging. if not train: self.sow("intermediates", "attn", attn) if self.renormalize_keys: # Corresponds to value aggregation via weighted mean (as opposed to sum). normalizer = jnp.sum(attn, axis=-1, keepdims=True) + self.epsilon attn = attn / normalizer if self.attn_weights_only: return attn # Aggregate values using a weighted sum with weights provided by `attn`. output = jnp.einsum( "...hqk,...khd->...qhd", attn, value, precision=self.precision) if self.return_attn_weights: return output, attn return output class Transformer(nn.Module): """Transformer with multiple blocks.""" num_heads: int qkv_size: int mlp_size: int num_layers: int pre_norm: bool = False @nn.compact def __call__(self, queries, inputs = None, padding_mask = None, train = False): x = queries for lyr in range(self.num_layers): x = TransformerBlock( num_heads=self.num_heads, qkv_size=self.qkv_size, mlp_size=self.mlp_size, pre_norm=self.pre_norm, name=f"TransformerBlock{lyr}")( # pytype: disable=wrong-arg-types x, inputs, padding_mask, train) return x class TransformerBlock(nn.Module): """Transformer decoder block.""" num_heads: int qkv_size: int mlp_size: int pre_norm: bool = False @nn.compact def __call__(self, queries, inputs = None, padding_mask = None, train = False): del padding_mask # Unused. assert queries.ndim == 3 attention_fn = GeneralizedDotProductAttention() attn = functools.partial( nn.MultiHeadDotProductAttention, num_heads=self.num_heads, qkv_features=self.qkv_size, attention_fn=attention_fn) mlp = misc.MLP(hidden_size=self.mlp_size) # type: ignore if self.pre_norm: # Self-attention on queries. x = nn.LayerNorm()(queries) x = attn()(inputs_q=x, inputs_kv=x, deterministic=not train) x = x + queries # Cross-attention on inputs. if inputs is not None: assert inputs.ndim == 3 y = nn.LayerNorm()(x) y = attn()(inputs_q=y, inputs_kv=inputs, deterministic=not train) y = y + x else: y = x # MLP z = nn.LayerNorm()(y) z = mlp(z, train) z = z + y else: # Self-attention on queries. x = queries x = attn()(inputs_q=x, inputs_kv=x, deterministic=not train) x = x + queries x = nn.LayerNorm()(x) # Cross-attention on inputs. if inputs is not None: assert inputs.ndim == 3 y = attn()(inputs_q=x, inputs_kv=inputs, deterministic=not train) y = y + x y = nn.LayerNorm()(y) else: y = x # MLP. z = mlp(y, train) z = z + y z = nn.LayerNorm()(z) return z