import logging from typing import Tuple import spacy from presidio_analyzer import RecognizerRegistry from presidio_analyzer.nlp_engine import ( NlpEngine, NlpEngineProvider, ) logger = logging.getLogger("presidio-streamlit") def create_nlp_engine_with_spacy( model_path: str, ) -> Tuple[NlpEngine, RecognizerRegistry]: """ Instantiate an NlpEngine with a spaCy model :param model_path: path to model / model name. """ nlp_configuration = { "nlp_engine_name": "spacy", "models": [{"lang_code": "en", "model_name": model_path}], "ner_model_configuration": { "model_to_presidio_entity_mapping": { "PER": "PERSON", "PERSON": "PERSON", "NORP": "NRP", "FAC": "FACILITY", "LOC": "LOCATION", "GPE": "LOCATION", "LOCATION": "LOCATION", "ORG": "ORGANIZATION", "ORGANIZATION": "ORGANIZATION", "DATE": "DATE_TIME", "TIME": "DATE_TIME", }, "low_confidence_score_multiplier": 0.4, "low_score_entity_names": ["ORG", "ORGANIZATION"], }, } nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() registry = RecognizerRegistry() registry.load_predefined_recognizers(nlp_engine=nlp_engine) return nlp_engine, registry def create_nlp_engine_with_stanza( model_path: str, ) -> Tuple[NlpEngine, RecognizerRegistry]: """ Instantiate an NlpEngine with a stanza model :param model_path: path to model / model name. """ nlp_configuration = { "nlp_engine_name": "stanza", "models": [{"lang_code": "en", "model_name": model_path}], "ner_model_configuration": { "model_to_presidio_entity_mapping": { "PER": "PERSON", "PERSON": "PERSON", "NORP": "NRP", "FAC": "FACILITY", "LOC": "LOCATION", "GPE": "LOCATION", "LOCATION": "LOCATION", "ORG": "ORGANIZATION", "ORGANIZATION": "ORGANIZATION", "DATE": "DATE_TIME", "TIME": "DATE_TIME", } }, } nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() registry = RecognizerRegistry() registry.load_predefined_recognizers(nlp_engine=nlp_engine) return nlp_engine, registry def create_nlp_engine_with_transformers( model_path: str, ) -> Tuple[NlpEngine, RecognizerRegistry]: """ Instantiate an NlpEngine with a TransformersRecognizer and a small spaCy model. The TransformersRecognizer would return results from Transformers models, the spaCy model would return NlpArtifacts such as POS and lemmas. :param model_path: HuggingFace model path. """ print(f"Loading Transformers model: {model_path} of type {type(model_path)}") nlp_configuration = { "nlp_engine_name": "transformers", "models": [ { "lang_code": "en", "model_name": {"spacy": "en_core_web_sm", "transformers": model_path}, } ], "ner_model_configuration": { "model_to_presidio_entity_mapping": { "PER": "PERSON", "PERSON": "PERSON", "LOC": "LOCATION", "LOCATION": "LOCATION", "GPE": "LOCATION", "ORG": "ORGANIZATION", "ORGANIZATION": "ORGANIZATION", "NORP": "NRP", "AGE": "AGE", "ID": "ID", "EMAIL": "EMAIL", "PATIENT": "PERSON", "STAFF": "PERSON", "HOSP": "ORGANIZATION", "PATORG": "ORGANIZATION", "DATE": "DATE_TIME", "TIME": "DATE_TIME", "PHONE": "PHONE_NUMBER", "HCW": "PERSON", "HOSPITAL": "ORGANIZATION", "FACILITY": "LOCATION", }, "low_confidence_score_multiplier": 0.4, "low_score_entity_names": ["ID"], "labels_to_ignore": [ "CARDINAL", "EVENT", "LANGUAGE", "LAW", "MONEY", "ORDINAL", "PERCENT", "PRODUCT", "QUANTITY", "WORK_OF_ART", ], }, } nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() registry = RecognizerRegistry() registry.load_predefined_recognizers(nlp_engine=nlp_engine) return nlp_engine, registry def create_nlp_engine_with_flair( model_path: str, ) -> Tuple[NlpEngine, RecognizerRegistry]: """ Instantiate an NlpEngine with a FlairRecognizer and a small spaCy model. The FlairRecognizer would return results from Flair models, the spaCy model would return NlpArtifacts such as POS and lemmas. :param model_path: Flair model path. """ from flair_recognizer import FlairRecognizer registry = RecognizerRegistry() registry.load_predefined_recognizers() # there is no official Flair NlpEngine, hence we load it as an additional recognizer if not spacy.util.is_package("en_core_web_sm"): spacy.cli.download("en_core_web_sm") # Using a small spaCy model + a Flair NER model flair_recognizer = FlairRecognizer(model_path=model_path) nlp_configuration = { "nlp_engine_name": "spacy", "models": [{"lang_code": "en", "model_name": "en_core_web_sm"}], } registry.add_recognizer(flair_recognizer) registry.remove_recognizer("SpacyRecognizer") nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() return nlp_engine, registry def create_nlp_engine_with_azure_ai_language(ta_key: str, ta_endpoint: str): """ Instantiate an NlpEngine with a TextAnalyticsWrapper and a small spaCy model. The TextAnalyticsWrapper would return results from calling Azure Text Analytics PII, the spaCy model would return NlpArtifacts such as POS and lemmas. :param ta_key: Azure Text Analytics key. :param ta_endpoint: Azure Text Analytics endpoint. """ from azure_ai_language_wrapper import AzureAIServiceWrapper if not ta_key or not ta_endpoint: raise RuntimeError("Please fill in the Text Analytics endpoint details") registry = RecognizerRegistry() registry.load_predefined_recognizers() azure_ai_language_recognizer = AzureAIServiceWrapper( ta_endpoint=ta_endpoint, ta_key=ta_key ) nlp_configuration = { "nlp_engine_name": "spacy", "models": [{"lang_code": "en", "model_name": "en_core_web_sm"}], } nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine() registry.add_recognizer(azure_ai_language_recognizer) registry.remove_recognizer("SpacyRecognizer") return nlp_engine, registry