from diffusers import DDIMScheduler from pipeline_stable_diffusion_xl_opt import StableDiffusionXLPipeline from injection_utils import regiter_attention_editor_diffusers from bounded_attention import BoundedAttention from pytorch_lightning import seed_everything import spaces import gradio as gr import torch import numpy as np from PIL import Image, ImageDraw from functools import partial RESOLUTION = 256 MIN_SIZE = 0.01 WHITE = 255 COLORS = ["red", "blue", "green", "orange", "purple", "turquoise", "olive"] def inference( device, model, boxes, prompts, subject_token_indices, filter_token_indices, num_tokens, init_step_size, final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale, classifier_free_guidance_scale, num_iterations, loss_threshold, num_guidance_steps, seed, ): seed_everything(seed) start_code = torch.randn([len(prompts), 4, 128, 128], device=device) editor = BoundedAttention( boxes, prompts, subject_token_indices, list(range(70, 82)), list(range(70, 82)), eos_token_index=num_tokens + 1, cross_loss_coef=cross_loss_scale, self_loss_coef=self_loss_scale, filter_token_indices=filter_token_indices, max_guidance_iter=num_guidance_steps, max_guidance_iter_per_step=num_iterations, start_step_size=init_step_size, end_step_size=final_step_size, loss_stopping_value=loss_threshold, num_clusters_per_box=num_clusters_per_subject, debug=False, ) regiter_attention_editor_diffusers(model, editor) return model(prompts, latents=start_code, guidance_scale=classifier_free_guidance_scale).images @spaces.GPU def generate( device, model, prompt, subject_token_indices, filter_token_indices, num_tokens, init_step_size, final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale, classifier_free_guidance_scale, batch_size, num_iterations, loss_threshold, num_guidance_steps, seed, boxes ): subject_token_indices = convert_token_indices(subject_token_indices, nested=True) if len(boxes) != len(subject_token_indices): raise gr.Error(""" The number of boxes should be equal to the number of subject token indices. Number of boxes drawn: {}, number of grounding tokens: {}. """.format(len(boxes), len(subject_token_indices))) filter_token_indices = convert_token_indices(filter_token_indices) if len(filter_token_indices.strip()) > 0 else None num_tokens = int(num_tokens) if len(num_tokens.strip()) > 0 else None prompts = [prompt.strip('.').strip(',').strip()] * batch_size images = inference( device, model, boxes, prompts, subject_token_indices, filter_token_indices, num_tokens, init_step_size, final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale, classifier_free_guidance_scale, num_iterations, loss_threshold, num_guidance_steps, seed) return images def convert_token_indices(token_indices, nested=False): if nested: return [convert_token_indices(indices, nested=False) for indices in token_indices.split(';')] return [int(index.strip()) for index in token_indices.split(',') if len(index.strip()) > 0] def draw(sketchpad): boxes = [] for i, layer in enumerate(sketchpad['layers']): mask = (layer != 0) if mask.sum() < 0: raise gr.Error(f'Box in layer {i} is too small') x1x2 = np.where(mask.max(0) != 0)[0] / RESOLUTION y1y2 = np.where(mask.max(1) != 0)[0] / RESOLUTION y1, y2 = y1y2.min(), y1y2.max() x1, x2 = x1x2.min(), x1x2.max() if (x2 - x1 < MIN_SIZE) or (y2 - y1 < MIN_SIZE): raise gr.Error(f'Box in layer {i} is too small') boxes.append((x1, y1, x2, y2)) layout_image = draw_boxes(boxes) return [boxes, layout_image] def draw_boxes(boxes): if len(boxes) == 0: return None boxes = np.array(boxes) * RESOLUTION image = Image.new('RGB', (RESOLUTION, RESOLUTION), (WHITE, WHITE, WHITE)) drawing = ImageDraw.Draw(image) for i, box in enumerate(boxes.astype(int).tolist()): drawing.rectangle(box, outline=COLORS[i % len(COLORS)], width=4) return image def clear(batch_size): return [[], None, None, None] def main(): css = """ #paper-info a { color:#008AD7; text-decoration: none; } #paper-info a:hover { cursor: pointer; text-decoration: none; } .tooltip { color: #555; position: relative; display: inline-block; cursor: pointer; } .tooltip .tooltiptext { visibility: hidden; width: 400px; background-color: #555; color: #fff; text-align: center; padding: 5px; border-radius: 5px; position: absolute; z-index: 1; /* Set z-index to 1 */ left: 10px; top: 100%; opacity: 0; transition: opacity 0.3s; } .tooltip:hover .tooltiptext { visibility: visible; opacity: 1; z-index: 9999; /* Set a high z-index value when hovering */ } """ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_path = "stabilityai/stable-diffusion-xl-base-1.0" scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False) model = StableDiffusionXLPipeline.from_pretrained(model_path, scheduler=scheduler, torch_dtype=torch.float16).to(device) model.unet.set_default_attn_processor() model.enable_xformers_memory_efficient_attention() model.enable_sequential_cpu_offload() with gr.Blocks( css=css, title="Bounded Attention demo", ) as demo: description = """

Bounded Attention
[Project Page] [Paper] [GitHub]

""" gr.HTML(description) with gr.Column(): prompt = gr.Textbox( label="Text prompt", ) subject_token_indices = gr.Textbox( label="The token indices of each subject (separate indices for the same subject with commas, and between different subjects with semicolons)", ) filter_token_indices = gr.Textbox( label="The token indices to filter, i.e. conjunctions, number, postional relations, etc. (if left empty, this will be automatically inferred)", ) num_tokens = gr.Textbox( label="The number of tokens in the prompt (can be left empty, but we recommend filling this, so we can verify your input, as sometimes rare words are split into more than one token)", ) with gr.Row(): sketchpad = gr.Sketchpad(label="Sketch Pad", width=RESOLUTION, height=RESOLUTION) layout_image = gr.Image(type="pil", label="Bounding Boxes", interactive=False, width=RESOLUTION, height=RESOLUTION) with gr.Row(): clear_button = gr.Button(value='Clear') generate_layout_button = gr.Button(value='Generate layout') generate_image_button = gr.Button(value='Generate image') with gr.Row(): out_images = gr.Gallery(type="pil", label="Generated Images", interactive=False) with gr.Accordion("Advanced Options", open=False): with gr.Column(): description = """
Batch size ⓘ The number of images to generate.
Initial step size ⓘ The initial step size of the linear step size scheduler when performing guidance.
Final step size ⓘ The final step size of the linear step size scheduler when performing guidance.
Number of self-attention clusters per subject ⓘ Determines the number of clusters when clustering the self-attention maps (#clusters = #subject x #clusters_per_subject). Changing this value might improve semantics (adherence to the prompt), especially when the subjects exceed their bounding boxes.
Cross-attention loss scale factor ⓘ The scale factor of the cross-attention loss term. Increasing it will improve semantic control (adherence to the prompt), but may reduce image quality.
Self-attention loss scale factor ⓘ The scale factor of the self-attention loss term. Increasing it will improve layout control (adherence to the bounding boxes), but may reduce image quality.
Classifier-free guidance scale ⓘ The scale factor of classifier-free guidance.
Number of Gradient Descent iterations per timestep ⓘ The number of Gradient Descent iterations for each timestep when performing guidance.
Loss Threshold ⓘ If the loss is below the threshold, Gradient Descent stops for that timestep.
Number of guidance steps ⓘ The number of timesteps in which to perform guidance.
""" gr.HTML(description) batch_size = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Number of samples") init_step_size = gr.Slider(minimum=0, maximum=50, step=0.5, value=25, label="Initial step size") final_step_size = gr.Slider(minimum=0, maximum=20, step=0.5, value=10, label="Final step size") num_clusters_per_subject = gr.Slider(minimum=0, maximum=5, step=0.5, value=3, label="Number of clusters per subject") cross_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Cross-attention loss scale factor") self_loss_scale = gr.Slider(minimum=0, maximum=2, step=0.1, value=1, label="Self-attention loss scale factor") classifier_free_guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Classifier-free guidance Scale") num_iterations = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Number of Gradient Descent iterations") loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss threshold") num_guidance_steps = gr.Slider(minimum=10, maximum=20, step=1, value=15, label="Number of timesteps to perform guidance") seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random Seed") boxes = gr.State([]) clear_button.click( clear, inputs=[batch_size], outputs=[boxes, sketchpad, layout_image, out_images], queue=False, ) generate_layout_button.click( draw, inputs=[sketchpad], outputs=[boxes, layout_image], queue=False, ) generate_image_button.click( fn=partial(generate, device, model), inputs=[ prompt, subject_token_indices, filter_token_indices, num_tokens, init_step_size, final_step_size, num_clusters_per_subject, cross_loss_scale, self_loss_scale, classifier_free_guidance_scale, batch_size, num_iterations, loss_threshold, num_guidance_steps, seed, boxes, ], outputs=[out_images], queue=True, ) #with gr.Column(): # gr.Examples( # examples=[ # [ # [[0.35, 0.4, 0.65, 0.9], [0, 0.6, 0.3, 0.9], [0.7, 0.55, 1, 0.85]], # "3D Pixar animation of a cute unicorn and a pink hedgehog and a nerdy owl traveling in a magical forest", # "7,8,17;11,12,17;15,16,17", # "5,6,9,10,13,14,18,19", # 286, # ], # ], # inputs=[boxes, prompt, subject_token_indices, filter_token_indices, seed], # outputs=None, # fn=None, # cache_examples=False, # ) description = """

The source code of this demo is based on the GLIGEN demo.

""" gr.HTML(description) demo.queue(max_size=50) demo.launch(show_api=False, show_error=True) if __name__ == '__main__': main()