import gradio as gr from fastai.vision.all import * from PIL import ImageDraw , ImageFont model = load_learner('lang_model.pkl') categories = model.dls.vocab def process_input(text): width = 255 height = 255 n=40 splitted_string = [text[i:i+n] for i in range(0, len(text), n)] text = ' \n '.join(splitted_string) img = Image.new('L', (width, height), color='white') imgDraw = ImageDraw.Draw(img) imgDraw.text((10, 10), text, fill=(0) , font=ImageFont.truetype("arial-unicode-ms.ttf", 10 ,layout_engine=ImageFont.LAYOUT_RAQM ,encoding='utf-8')) return img def classify_img(im,text): if text.strip() != '': img = process_input(text) pred , idx , probs = model.predict(PILImage(process_input(text))) return dict(zip(categories , map(float , probs))) else : pred , idx , probs = model.predict(im) return dict(zip(categories , map(float , probs))) text_input = gr.inputs.Textbox(lines=3 , placeholder="You can only put in a text or an img , else you will get an error! , if there's text we ignore the image") label = gr.outputs.Label() examples = [['dasd.jpg',''] , ['hindi.jpg' , ''] , ['arabic.png' ,'']] image = gr.inputs.Image(shape=(194,194) , image_mode = "L") intf = gr.Interface(fn = classify_img , inputs = [image,text_input ] , outputs = label , examples = examples) intf.launch(inline = False)