import os # Add this import to use os.path.splitext import csv import streamlit as st import polars as pl from io import BytesIO, StringIO from gliner import GLiNER from gliner_file import run_ner import time st.set_page_config(page_title="GliNER", page_icon="🧊", layout="wide", initial_sidebar_state="expanded") # Modified function to load data from either an Excel or CSV file @st.cache_data def load_data(file): _, file_ext = os.path.splitext(file.name) if file_ext.lower() in ['.xls', '.xlsx']: return pl.read_excel(file) elif file_ext.lower() == '.csv': file.seek(0) # Retour au début du fichier try: sample = file.read(4096).decode('utf-8') # Essayer de décoder l'échantillon en UTF-8 encoding = 'utf-8' except UnicodeDecodeError: encoding = 'latin1' # Basculer sur 'latin1' si UTF-8 échoue file.seek(0) sample = file.read(4096).decode(encoding) file.seek(0) dialect = csv.Sniffer().sniff(sample) # Détecter le dialecte/délimiteur # Convertir le fichier en StringIO pour simuler un fichier texte, si nécessaire file.seek(0) if encoding != 'utf-8': file_content = file.read().decode(encoding) file = StringIO(file_content) else: file_content = file.read().decode('utf-8') file = StringIO(file_content) return pl.read_csv(file, separator=dialect.delimiter, truncate_ragged_lines=True, ignore_errors=True) else: raise ValueError("The uploaded file must be a CSV or Excel file.") # Function to perform NER and update the UI def perform_ner(filtered_df, selected_column, labels_list): ner_results_dict = {label: [] for label in labels_list} progress_bar = st.progress(0) progress_text = st.empty() start_time = time.time() # Enregistrer le temps de début pour le temps d'exécution total for index, row in enumerate(filtered_df.to_pandas().itertuples(), 1): iteration_start_time = time.time() # Temps de début pour cette itération if st.session_state.stop_processing: progress_text.text("Process stopped by the user.") break text_to_analyze = getattr(row, selected_column) ner_results = run_ner(st.session_state.gliner_model, text_to_analyze, labels_list) for label in labels_list: texts = ner_results.get(label, []) concatenated_texts = ', '.join(texts) ner_results_dict[label].append(concatenated_texts) progress = index / filtered_df.height progress_bar.progress(progress) iteration_time = time.time() - iteration_start_time # Calculer le temps d'exécution pour cette itération total_time = time.time() - start_time # Calculer le temps total écoulé jusqu'à présent progress_text.text(f"Progress: {index}/{filtered_df.height} - {progress * 100:.0f}% (Iteration: {iteration_time:.2f}s, Total: {total_time:.2f}s)") end_time = time.time() # Enregistrer le temps de fin total_execution_time = end_time - start_time # Calculer le temps d'exécution total progress_text.text(f"Processing complete! Total execution time: {total_execution_time:.2f}s") for label, texts in ner_results_dict.items(): filtered_df = filtered_df.with_columns(pl.Series(name=label, values=texts)) return filtered_df def main(): st.title("Online NER with GliNER") st.markdown("Prototype v0.1") # Ensure the stop_processing flag is initialized if 'stop_processing' not in st.session_state: st.session_state.stop_processing = False uploaded_file = st.sidebar.file_uploader("Choose a file") if uploaded_file is None: st.warning("Please upload a file.") return try: df = load_data(uploaded_file) except ValueError as e: st.error(str(e)) return selected_column = st.selectbox("Select the column for NER:", df.columns, index=0) filter_text = st.text_input("Filter column by input text", "") ner_labels = st.text_input("Enter all your different labels, separated by a comma", "") filtered_df = df.filter(pl.col(selected_column).str.contains(f"(?i).*{filter_text}.*")) if filter_text else df st.dataframe(filtered_df) if st.button("Start NER"): if not ner_labels: st.warning("Please enter some labels for NER.") else: # Load GLiNER model if not already loaded if 'gliner_model' not in st.session_state: with st.spinner('Loading GLiNER model... Please wait.'): st.session_state.gliner_model = GLiNER.from_pretrained("urchade/gliner_largev2") st.session_state.gliner_model.eval() labels_list = ner_labels.split(",") updated_df = perform_ner(filtered_df, selected_column, labels_list) st.dataframe(updated_df) def to_excel(df): output = BytesIO() df.to_pandas().to_excel(output, index=False, engine='openpyxl') return output.getvalue() df_excel = to_excel(updated_df) st.download_button(label="📥 Download Excel", data=df_excel, file_name="ner_results.xlsx", mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet") st.button("Stop Processing", on_click=lambda: setattr(st.session_state, 'stop_processing', True)) if __name__ == "__main__": main()