PMID: 28683067 PMCID: PMC5500005 DOI: 10.1371/journal.pbio.2001246 Methods Ethics All study protocols involving mice were approved by the Animal Care and Use Committee at the Johns Hopkins University (protocol MO14M315) and conducted in accordance with the NIH guidelines for care and use of animals. Animals C57BL/6 mice were housed in a temperature- and humidity-controlled room with a 12:12 hour light:dark cycle, and provided with ad libitum access to water and food. Both sexes were equally represented in all experiments. No animals were excluded. Isoflurane treatment and physiologic monitoring of sentinel animals P18 mouse littermates were randomly assigned to 2 groups. In Group 1 (isoflurane), mice were exposed to 1.5% isoflurane carried in 100% oxygen for 4 hours. A calibrated flowmeter was used to deliver oxygen at a flow rate of 5 L/min and an agent-specific vaporizer was used to deliver isoflurane. In Group 2 (control), mice were exposed to room air for 4 hours. Animals were returned to their cages together with their littermates upon regaining righting reflex. Mice were continually monitored and recorded for skin temperature, heart rate, and oxygen saturation during the 4-hour isoflurane treatment (PhysioSuite; Kent Scientific, Torrington, CT). Intracardiac puncture was used to collect left ventricular blood samples from selected sentinel animals, and those confirmed to be arterial are reported. Production and stereotaxic injection of engineered retroviruses Engineered self-inactivating murine retroviruses were used to express GFP under Ubiquitin promotor (pSUbGW vector) specifically in proliferating cells and their progeny [55,56]. High titers of engineered retroviruses (1 x 109 unit/ml) were produced by cotransfection of retroviral vectors and VSVG into HEK293gp cells followed by ultracentrifugation of viral supernatant as previously described [24,49,55–57]. After induction with a single ketamine injection (50mg/kg), high titers of GFP-expressing retroviruses were stereotaxically injected into the P15 mice dentate gyrus through a 32-gauge microsyringe (Hamilton Robotics, Reno, NV) at 2 sites of the following coordinates relative to the bregma (mm): AP: −2.2, ML: ±2.2, DV: −2.4. The retrovirus-containing solution was injected at a rate of 0.025 μl/min for a total of 0.5 μl per site. After infusion, the microsyringe was left in place for an additional 5 minutes to ensure full virus diffusion and to minimize backflow. After surgery, mice were monitored for general health every day until full recovery. In order to test for a possible confound related to the use of ketamine anesthesia, pS6 immunoreactivity in the dentate gyrus was quantified at P30 in naïve control animals and compared to pS6 immunoreactivity in animals doses with ketamine as above. No significant difference is seen in pS6 levels between these groups (S6 Fig). Immunostaining After transcardial perfusion fixation with 4% paraformaldehyde/PBS, brains were sliced transversely (50 μm thick) with microtome and processed for immunohistochemistry. Primary antibodies, including goat anti-GFP (Rockland, 1:1000) and chicken anti-GFP (Millipore, 1:1000) were used. Immunofluorescence was performed with a combination of Alexa Fluor 488- or Alexa Fluor 594-labeled anti-goat, anti-chicken, or anti-rabbit secondary antibodies (1:250) and 4ʹ,6ʹ-diaminodino-2-phenylindole (DAPI, 1:5000). For analysis of pS6 levels, primary antibodies against pS6-Ser235/236 (rabbit, 1:1000, Cell Signaling) were used. Effective immunostaining of pS6 required an antigen retrieval protocol as previously described [58]. Briefly, sections were incubated in target retrieval solution (DAKO) in 85°C for 20 minutes followed by washing with PBS for t3 times before the incubation with primary antibody. Imaging and analyses Images were acquired on a confocal system (Zeiss LSM 710 or Leica SPE) and morphological analyses were carried out as previously described [24,49,55,56,58,59]. Images for dendritic and spine morphology were deconvoluted with Auto Quant X (Media Cybernetics, Rockville, MD) using the blind algorithm, which employs an iteratively refined theoretical PSF. No further processing was performed prior to image analysis. For visualization, brightness, and contrast levels were adjusted using Image J (NIH). For analysis of dendritic development, three-dimensional (3D) reconstructions of entire dendritic processes of each GFP+ neuron were obtained from Z-series stacks of confocal images using excitation wavelength of 488 nm at high magnification (x 40 lens with 0.7x optical zoom). The two-dimensional (2D) projection images were traced with NIH Image J plugin, NeuronJ. All GFP+ DGCs with largely intact, clearly identifiable dendritic trees were analyzed for total dendritic length. The measurements did not include corrections for inclinations of dendritic process and therefore represented projected lengths. Sholl analysis for dendritic complexity was carried out by counting the number of dendrites that crossed a series of concentric circles at 10 μm intervals from the cell soma using ImageJ (NIH). For complete 3D reconstruction of spines, consecutive stacks of images were acquired using an excitation wavelength of 488 nm at high magnification (x 63 lens with 5x optical zoom) to capture the full depth of dendritic fragments (20–35 μm long, 40~70 dendritic fragments in each condition analyzed) and spines using a confocal microscope (Zeiss, Oberkochen. Germany). Confocal image stacks were deconvoluted using a blind deconvolution method (Autoquant X; Media Cybernetics, Rockville, MD). The structure of dendritic fragments and spines was traced using 3D Imaris software using a “fire” heatmap and a 2D x–y orthoslice plane to aid visualization (Bitplane, Belfast, UK). Dendritic fragments were traced using automatic filament tracer, whereas dendritic spines were traced by means of an autopath method with the semiautomatic filament tracer (diameter; min: 0.1, max: 2.0, contrast: 0.8). For spine classification, a custom MatLab (MathWorks, Natick, MA) script was used based on the algorithm; stubby: length (spine) <1.5 and max width (head)mean width (neck) *1.2 and max_width (head) >0.3; if the spine was not classified as mushroom or stubby, it was defined as long-thin. Axonal bouton volume from axonal fragments was measured by using 3D Imaris software and using a magic wand menu (Bitplane, Belfast, UK) after deconvolution. For analysis of pS6 levels, the sections were processed in parallel and images were acquired using the identical settings, (Zeiss LSM 710, 20X lens). Fluorescence intensity was measured within the granular cell layer using ImageJ (NIH) and the value was normalized to background signal in the same image. These data were then subsequently normalized to the area of the dentate gyrus granule layer as defined by DAPI staining. All experiments were carried out in a blind fashion to experimental conditions. Behavioral tests Sixty-day-old mice housed in groups (5 mice per cage) were handled for at least 2 minutes per day for 3 days before the start of the behavioral experiments. All behavioral tests were performed during the light phase of the cycle between 8:00am and 6:00pm. Experimenters were blind to the samples when behavioral tests were carried out and quantified. The numbers of mice per condition are indicated in the figure legends. Object-place recognition test Object-place recognition was performed as previously described [37]. Briefly, the test was assessed in a 27.5 cm × 27.5 cm × 25 cm opaque chamber with a prominent cue on 1 of the walls. Each mouse was habituated to the chamber for 15 minutes daily for 2 days. During the training phrase, each mouse was allowed to explore 2 identical objects (glass bottle, 2.7 cm diameter, 12 cm height, and colored paper inside) for 10 minutes. The mouse was then returned to its home cage for a retention period of 24 hours. The mouse was reintroduced to the training context and presented with 1 object that stayed in the same position as during training while the other object was moved to a new position. Movement and interaction with the objects was recorded with a video camera that was mounted above the chamber and exploratory behavior was measured by a blinded observer. Exploratory behavior was defined as sniffing, licking, or touching the object while facing the object. Y-maze test In the Y-maze test, mice were released from the start arm (no visual cue) and allowed to habituate to only 1 out of 2 possible choice arms (overt visual cue) for 15 minutes. This was followed at 24 hours later by the recognition phrase in which the animal could choose between the 2 choice arms after being released from the start arm. The timed trials (5 minutes) were video recorded as well as graded by an observer blind to condition for total exploration time in each choice arm. Rapamycin treatment P21 mouse littermates were given IP injections of rapamycin (Sigma-Aldrich, St. Louis, MO) prepared from a stock solution (25 mg/ml in 100% ethanol, stored at -20°C) diluted to a final concentration of 4% (v/v) ethanol in the vehicle. Vehicle consisted of 5% Tween 80 (Sigma-Aldrich, St. Louis, MO) and 10% polyethylene glycol 400 (Sigma-Aldrich, St. Louis, MO) as previously described [58,60,61]. Both rapamycin- and vehicle-treated mice received the same volume for each injection (200 μl). Mice received treatments at 48 hour intervals from P21 to P29. Statistics Results are expressed as mean ± SEM. A one-tailed Student t test or ANOVA with Bonferroni test for intergroup comparisons were used for most statistical comparisons between groups as described in the figure legends using Prism Software (Graphpad Software Inc, La Jolla, CA). For Sholl analysis ANOVA was used at each point to test for differences between distributions. All data examined with parametric tests were determined to be normally distributed, and the criteria for statistical significance was set a priori at p < 0.05. Sample sizes were predicted based on experience from previous similar work [24]. All relevant data are available from the authors.