from prompt import Prompt
from openai import OpenAI
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
import gradio as gr
import pandas as pd
import os
class Backend:
def __init__(self):
self.agent = OpenAI()
self.prompt = Prompt()
def read_file_single(self, file):
# read the file
if file is not None:
with open(file.name, 'r') as f:
text = f.read()
else:
raise gr.Error("You need to upload a file first")
return text
def phrase_pdf(self, file_path):
from langchain.document_loaders import UnstructuredPDFLoader
loader = UnstructuredPDFLoader(file_path, model = 'elements')
file = loader.load()
return file[0].page_content
def read_file(self, files):
# read the file
text_list = []
self.filename_list = []
if files is not None:
for file in files:
if file.name.split('.')[-1] == 'pdf':
# convert pdf to txt
text = self.phrase_pdf(file.name)
else:
with open(file.name, 'r', encoding='utf-8') as f:
text = f.read()
text_list.append(text)
self.filename_list.append(file.name.split('\\')[-1])
else:
raise gr.Error("You need to upload a file first")
return text_list
def highlight_text(self, text, highlight_list):
# Find the original sentences
# Split the passage into sentences
sentences_in_passage = text.split('.')
sentences_in_passage = [i.split('\n') for i in sentences_in_passage]
new_sentences_in_passage = []
for i in sentences_in_passage:
new_sentences_in_passage =new_sentences_in_passage + i
# hightlight the reference
for hl in highlight_list:
# Find the best match using fuzzy matching
best_match = process.extractOne(hl, new_sentences_in_passage, scorer=fuzz.partial_ratio)
text = text.replace(best_match[0], f'{best_match[0]} (match score:{best_match[1]})')
# add line break
text = text.replace('\n', f"
")
# add scroll bar
text = f'
{text}
'
return text
def process_file(self, file, questions, openai_key, progress = gr.Progress()):
# record the questions
self.questions = questions
# get the text_list
self.text_list = self.read_file(file)
# make the prompt
prompt_list = [self.prompt.get(text, questions, 'v3') for text in self.text_list]
# interact with openai
self.res_list = []
for prompt in progress.tqdm(prompt_list, desc = 'Generating answers...'):
res = self.agent(prompt, with_history = False, temperature = 0.1, model = 'gpt-3.5-turbo-16k', api_key = openai_key)
res = self.prompt.process_result(res, 'v3')
self.res_list.append(res)
# Use the first file as default
# Use the first question for multiple questions
gpt_res = self.res_list[0]
self.gpt_result = gpt_res
self.current_question = 0
self.totel_question = len(res.keys())
self.current_passage = 0
self.total_passages = len(self.res_list)
# make a dataframe to record everything
self.ori_answer_df = pd.DataFrame()
self.answer_df = pd.DataFrame()
for i, res in enumerate(self.res_list):
tmp = pd.DataFrame(res).T
tmp = tmp.reset_index()
tmp = tmp.rename(columns={"index":"question_id"})
tmp['filename'] = self.filename_list[i]
tmp['question'] = self.questions
self.ori_answer_df = pd.concat([tmp, self.ori_answer_df])
self.answer_df = pd.concat([tmp, self.answer_df])
# default fist question
res = res['Question 1']
question = self.questions[self.current_question]
self.answer = res['answer']
self.text = self.text_list[0]
self.highlighted_out = res['original sentences']
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
self.highlighted_out = '\n'.join(self.highlighted_out)
file_name = self.filename_list[self.current_passage]
return file_name, question, self.answer, highlighted_out_html, self.answer, self.highlighted_out
def process_results(self, answer_correct, correct_answer, reference_correct, correct_reference):
if not hasattr(self, 'clicked_correct_answer'):
raise gr.Error("You need to judge whether the generated answer is correct first")
if not hasattr(self, 'clicked_correct_reference'):
raise gr.Error("You need to judge whether the highlighted reference is correct first")
if not hasattr(self, 'answer_df'):
raise gr.Error("You need to submit the document first")
if self.current_question >= self.totel_question or self.current_question < 0:
raise gr.Error("No more questions, please return back")
# record the answer
condition = (self.answer_df['question_id'] == f'Question {self.current_question + 1}' ) & \
(self.answer_df['filename'] == self.filename_list[self.current_passage])
self.answer_df.loc[condition, 'answer_correct'] = answer_correct
self.answer_df.loc[condition, 'reference_correct'] = reference_correct
# self.answer_df.loc[f'Question {self.current_question + 1}', 'answer_correct'] = answer_correct
# self.answer_df.loc[f'Question {self.current_question + 1}', 'reference_correct'] = reference_correct
if self.clicked_correct_answer == True:
if hasattr(self, 'answer'):
self.answer_df.loc[condition, 'correct_answer'] = self.answer
else:
raise gr.Error("You need to submit the document first")
else:
# self.answer_df.loc[f'Question {self.current_question + 1}', 'correct_answer'] = correct_answer
self.answer_df.loc[condition, 'correct_answer'] = correct_answer
if self.clicked_correct_reference == True:
if hasattr(self, 'highlighted_out'):
self.answer_df.loc[condition, 'correct_reference'] = self.highlighted_out
else:
raise gr.Error("You need to submit the document first")
else:
self.answer_df.loc[condition, 'correct_reference'] = correct_reference
gr.Info('Results saved!')
return "Results saved!"
def process_next(self):
self.current_question += 1
if hasattr(self, 'clicked_correct_answer'):
del self.clicked_correct_answer
if hasattr(self, 'clicked_correct_reference'):
del self.clicked_correct_reference
if self.current_question >= self.totel_question:
# self.current_question -= 1
return "No more questions!", "No more questions!", "No more questions!", "No more questions!", 'No more questions!', 'No more questions!', 'Still need to click the button above to save the results', None, None
else:
res = self.gpt_result[f'Question {self.current_question + 1}']
question = self.questions[self.current_question]
self.answer = res['answer']
self.highlighted_out = res['original sentences']
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
self.highlighted_out = '\n'.join(self.highlighted_out)
file_name = self.filename_list[self.current_passage]
return file_name, question, self.answer, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None
def process_last(self):
self.current_question -= 1
# To make sure to correct the answer first
if hasattr(self, 'clicked_correct_answer'):
del self.clicked_correct_answer
if hasattr(self, 'clicked_correct_reference'):
del self.clicked_correct_reference
# check question boundary
if self.current_question < 0:
# self.current_question += 1
return "No more questions!", "No more questions!", "No more questions!", "No more questions!", 'No more questions!', 'No more questions!', 'Still need to click the button above to save the results', None, None
else:
res = self.gpt_result[f'Question {self.current_question + 1}']
question = self.questions[self.current_question]
self.answer = res['answer']
self.highlighted_out = res['original sentences']
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
self.highlighted_out = '\n'.join(self.highlighted_out)
file_name = self.filename_list[self.current_passage]
return file_name, question, self.answer, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None
def switch_next_passage(self):
self.current_question = 0
# To make sure to correct the answer first
if hasattr(self, 'clicked_correct_answer'):
del self.clicked_correct_answer
if hasattr(self, 'clicked_correct_reference'):
del self.clicked_correct_reference
self.current_passage += 1
if self.current_passage >= self.total_passages:
# self.current_passage -= 1
return "No more passages!", "No more passages!", "No more passages!", "No more passages!", 'No more passages!', 'No more passages!', 'Still need to click the button above to save the results', None, None
else:
self.text = self.text_list[self.current_passage]
gpt_res = self.res_list[self.current_passage]
self.gpt_result = gpt_res
res = self.gpt_result[f'Question {self.current_question + 1}']
question = self.questions[self.current_question]
self.answer = res['answer']
self.highlighted_out = res['original sentences']
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
self.highlighted_out = '\n'.join(self.highlighted_out)
file_name = self.filename_list[self.current_passage]
return file_name, question, self.answer, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None
def switch_last_passage(self):
self.current_question = 0
# To make sure to correct the answer first
if hasattr(self, 'clicked_correct_answer'):
del self.clicked_correct_answer
if hasattr(self, 'clicked_correct_reference'):
del self.clicked_correct_reference
self.current_passage -= 1
if self.current_passage < 0:
# self.current_passage += 1
return "No more passages!", "No more passages!", "No more passages!", "No more passages!", 'No more passages!', 'No more passages!', 'Still need to click the button above to save the results', None, None
else:
self.text = self.text_list[self.current_passage]
gpt_res = self.res_list[self.current_passage]
self.gpt_result = gpt_res
res = self.gpt_result[f'Question {self.current_question + 1}']
question = self.questions[self.current_question]
self.answer = res['answer']
self.highlighted_out = res['original sentences']
highlighted_out_html = self.highlight_text(self.text, self.highlighted_out)
self.highlighted_out = '\n'.join(self.highlighted_out)
file_name = self.filename_list[self.current_passage]
return file_name, question, self.answer, highlighted_out_html, 'Please judge on the generated answer', 'Please judge on the generated answer', 'Still need to click the button above to save the results', None, None
def download_answer(self, path = './tmp', name = 'answer.xlsx'):
os.makedirs(path, exist_ok = True)
path = os.path.join(path, name)
# self.ori_answer_df['questions'] = self.questions
self.ori_answer_df.to_excel(path, index = False)
return path
def download_corrected(self, path = './tmp', name = 'corrected_answer.xlsx'):
os.makedirs(path, exist_ok = True)
path = os.path.join(path, name)
# self.answer_df['questions'] = self.questions
self.answer_df.to_excel(path, index = False)
return path
def change_correct_answer(self, correctness):
if correctness == "Correct":
self.clicked_correct_answer = True
return "No need to change"
else:
if hasattr(self, 'answer'):
self.clicked_correct_answer = False
return self.answer
else:
return "No answer yet, you need to submit the document first"
def change_correct_reference(self, correctness):
if correctness == "Correct":
self.clicked_correct_reference = True
return "No need to change"
else:
if hasattr(self, 'highlighted_out'):
self.clicked_correct_reference = False
return self.highlighted_out
else:
return "No answer yet, you need to submit the document first"