okara chidera commited on
Commit
2683024
·
unverified ·
1 Parent(s): b5b36ad

feat: credit copilot

Browse files
Files changed (3) hide show
  1. README.md +24 -14
  2. app.py +243 -0
  3. requirements.txt +5 -0
README.md CHANGED
@@ -1,14 +1,24 @@
1
- ---
2
- title: CreditCopilotKYCManager
3
- emoji: 👁
4
- colorFrom: yellow
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 5.49.1
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- short_description: Automated KYC verification with AI.
12
- ---
13
-
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
1
+ # CreditCopilot — KYC Manager
2
+
3
+ CreditCopilot automates Know Your Customer (KYC) checks by analyzing uploaded documents and producing structured compliance reports.
4
+
5
+ **Features**
6
+ - Upload ID, selfie, and address proofs (PDF or images)
7
+ - Extract text and data automatically using OCR
8
+ - Parse name, DOB, ID number, expiry date, email, phone, and address
9
+ - Validate document completeness and consistency
10
+ - Highlight missing or expired documents
11
+ - Generate both human-readable summaries and downloadable JSON reports
12
+ - Optional AI refinement via Hugging Face Inference API
13
+
14
+ **Built with:** Python · Gradio · pdfplumber · pytesseract · Hugging Face Hub
15
+
16
+ ### Optional Variables
17
+ Add these under **Settings → Variables and secrets**:
18
+ - `HF_TOKEN`: Hugging Face token for AI summarization
19
+ - `HF_MODEL`: Optional model (default: `mistralai/Mistral-7B-Instruct-v0.2`)
20
+
21
+ ### Run locally
22
+ ```bash
23
+ pip install -r requirements.txt
24
+ python app.py
app.py ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, re, json, base64
2
+ import gradio as gr
3
+ from datetime import datetime
4
+ from dataclasses import dataclass, asdict
5
+ from typing import List, Optional, Dict, Any
6
+
7
+ # Optional LLM summary (set HF_TOKEN in Space secrets)
8
+ HF_TOKEN = os.getenv("HF_TOKEN", "")
9
+ HF_MODEL = os.getenv("HF_MODEL", "mistralai/Mistral-7B-Instruct-v0.2")
10
+ USE_LLM = bool(HF_TOKEN)
11
+
12
+ if USE_LLM:
13
+ from huggingface_hub import InferenceClient
14
+ client = InferenceClient(token=HF_TOKEN)
15
+
16
+ # PDF & image parsing
17
+ import pdfplumber
18
+ from PIL import Image
19
+ try:
20
+ import pytesseract
21
+ OCR_AVAILABLE = True
22
+ except Exception:
23
+ OCR_AVAILABLE = False
24
+
25
+
26
+ # ---------- CONFIG ----------
27
+ REQUIRED_DOCS = ["Government ID", "Selfie / Liveness", "Proof of Address"]
28
+ DATE_PAT = r"(?:\b(20\d{2}|19\d{2})[-/.](0?[1-9]|1[0-2])[-/.](0?[1-9]|[12]\d|3[01])\b)"
29
+ EMAIL_PAT = r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}\b"
30
+ PHONE_PAT = r"(?:\+?\d{1,3})?[\s-]?\d{6,14}"
31
+ ID_PAT = r"\b([A-Z]{1,3}\d{6,12}|[0-9]{8,14})\b"
32
+
33
+
34
+ @dataclass
35
+ class KYCSummary:
36
+ applicant_name: Optional[str]
37
+ dob: Optional[str]
38
+ doc_id_number: Optional[str]
39
+ doc_type: Optional[str]
40
+ doc_expiry: Optional[str]
41
+ email: Optional[str]
42
+ phone: Optional[str]
43
+ address_snippet: Optional[str]
44
+ required_docs: List[str]
45
+ provided_docs: List[str]
46
+ missing_docs: List[str]
47
+ red_flags: List[str]
48
+ extracted_text_preview: str
49
+ generated_at: str
50
+
51
+
52
+ # ---------- HELPERS ----------
53
+ def read_pdf(file_path: str) -> str:
54
+ text_chunks = []
55
+ with pdfplumber.open(file_path) as pdf:
56
+ for page in pdf.pages:
57
+ t = page.extract_text() or ""
58
+ if not t and OCR_AVAILABLE:
59
+ img = page.to_image(resolution=200).original
60
+ t = pytesseract.image_to_string(img)
61
+ text_chunks.append(t)
62
+ return "\n".join(text_chunks)
63
+
64
+
65
+ def read_image(file_path: str) -> str:
66
+ if not OCR_AVAILABLE:
67
+ return ""
68
+ img = Image.open(file_path).convert("RGB")
69
+ return pytesseract.image_to_string(img)
70
+
71
+
72
+ def extract_text(file) -> str:
73
+ if not file:
74
+ return ""
75
+ _, ext = os.path.splitext(file.name)
76
+ ext = ext.lower()
77
+ try:
78
+ if ext == ".pdf":
79
+ return read_pdf(file.name)
80
+ elif ext in [".png", ".jpg", ".jpeg", ".webp"]:
81
+ return read_image(file.name)
82
+ return ""
83
+ except Exception:
84
+ return ""
85
+
86
+
87
+ def parse_fields(text: str) -> Dict[str, Optional[str]]:
88
+ if not text:
89
+ return {k: None for k in ["name", "dob", "id_number", "doc_type", "doc_expiry", "email", "phone", "address"]}
90
+
91
+ name = None
92
+ for line in text.splitlines():
93
+ if "name" in line.lower() and ":" in line:
94
+ name = line.split(":", 1)[1].strip()
95
+ break
96
+ if not name:
97
+ m = re.search(r"\b([A-Z][a-z]+(?:\s[A-Z][a-z]+){1,3})\b", text)
98
+ name = m.group(1) if m else None
99
+
100
+ dob = (re.search(DATE_PAT, text) or [None])
101
+ dob = dob.group(0) if hasattr(dob, "group") else None
102
+ email = (re.search(EMAIL_PAT, text) or [None])
103
+ email = email.group(0) if hasattr(email, "group") else None
104
+ phone = (re.search(PHONE_PAT, text) or [None])
105
+ phone = phone.group(0) if hasattr(phone, "group") else None
106
+ id_number = (re.search(ID_PAT, text) or [None])
107
+ id_number = id_number.group(1) if hasattr(id_number, "group") else None
108
+
109
+ doc_expiry = None
110
+ mexp = re.search(r"(exp.*?:?\s*)(%s)" % DATE_PAT, text, flags=re.I)
111
+ if mexp:
112
+ doc_expiry = mexp.group(2) or mexp.group(0).split()[-1]
113
+
114
+ address = None
115
+ for line in text.splitlines():
116
+ if re.search(r"\b(road|street|st\.|rd\.|avenue|estate|close)\b", line, re.I):
117
+ address = line.strip()
118
+ break
119
+
120
+ doc_type = None
121
+ for label in ["Passport", "Driver", "Voter", "National ID"]:
122
+ if re.search(label, text, re.I):
123
+ doc_type = label
124
+ break
125
+
126
+ return {
127
+ "name": name,
128
+ "dob": dob,
129
+ "id_number": id_number,
130
+ "doc_type": doc_type,
131
+ "doc_expiry": doc_expiry,
132
+ "email": email,
133
+ "phone": phone,
134
+ "address": address,
135
+ }
136
+
137
+
138
+ def evaluate_rules(parsed: Dict[str, Optional[str]], expected_name: str, provided_docs: List[str]) -> Dict[str, Any]:
139
+ missing = [d for d in REQUIRED_DOCS if d not in provided_docs]
140
+ red_flags = []
141
+
142
+ if expected_name and parsed.get("name") and expected_name.lower() not in parsed["name"].lower():
143
+ red_flags.append("Name mismatch between input and document.")
144
+ if not parsed.get("dob"):
145
+ red_flags.append("Date of birth not found.")
146
+ if parsed.get("doc_expiry"):
147
+ try:
148
+ year = int(re.search(r"\d{4}", parsed["doc_expiry"]).group(0))
149
+ if year < datetime.now().year:
150
+ red_flags.append("Document may be expired.")
151
+ except Exception:
152
+ pass
153
+ if not parsed.get("address"):
154
+ red_flags.append("Address not detected.")
155
+ return {"missing_docs": missing, "red_flags": red_flags}
156
+
157
+
158
+ def summarize(summary: KYCSummary) -> str:
159
+ lines = [
160
+ f"Applicant: **{summary.applicant_name or 'Unknown'}**",
161
+ f"DOB: {summary.dob or 'N/A'}",
162
+ f"ID: {summary.doc_type or 'Document'} — {summary.doc_id_number or 'N/A'}",
163
+ f"Expiry: {summary.doc_expiry or 'N/A'}",
164
+ f"Email: {summary.email or 'N/A'}",
165
+ f"Phone: {summary.phone or 'N/A'}",
166
+ f"Address: {summary.address_snippet or 'N/A'}",
167
+ f"Provided: {', '.join(summary.provided_docs) or 'None'}",
168
+ f"Missing: {', '.join(summary.missing_docs) or 'None'}",
169
+ f"Red Flags: {', '.join(summary.red_flags) or 'None'}",
170
+ ]
171
+ return "\n".join(lines)
172
+
173
+
174
+ def llm_refine(text: str) -> str:
175
+ if not USE_LLM:
176
+ return text
177
+ try:
178
+ result = client.text_generation(
179
+ f"Rewrite this KYC review more clearly:\n\n{text}",
180
+ max_new_tokens=180,
181
+ temperature=0.2
182
+ )
183
+ return result.strip()
184
+ except Exception:
185
+ return text
186
+
187
+
188
+ def run_kyc(name, provided_docs, id_doc, selfie_doc, address_doc):
189
+ docs = [id_doc, selfie_doc, address_doc]
190
+ text = "\n\n".join([extract_text(d) for d in docs if d])
191
+ parsed = parse_fields(text)
192
+ evals = evaluate_rules(parsed, name, provided_docs)
193
+
194
+ summary = KYCSummary(
195
+ applicant_name=parsed["name"] or name,
196
+ dob=parsed["dob"],
197
+ doc_id_number=parsed["id_number"],
198
+ doc_type=parsed["doc_type"],
199
+ doc_expiry=parsed["doc_expiry"],
200
+ email=parsed["email"],
201
+ phone=parsed["phone"],
202
+ address_snippet=parsed["address"],
203
+ required_docs=REQUIRED_DOCS,
204
+ provided_docs=provided_docs,
205
+ missing_docs=evals["missing_docs"],
206
+ red_flags=evals["red_flags"],
207
+ extracted_text_preview=text[:800],
208
+ generated_at=datetime.utcnow().isoformat() + "Z",
209
+ )
210
+
211
+ human = summarize(summary)
212
+ human_refined = llm_refine(human)
213
+ json_report = json.dumps(asdict(summary), indent=2)
214
+ download = f'<a href="data:application/json;base64,{base64.b64encode(json_report.encode()).decode()}" download="kyc_report.json">Download JSON report</a>'
215
+ return human_refined, json_report, download
216
+
217
+
218
+ # ---------- UI ----------
219
+ with gr.Blocks(title="CreditCopilot — KYC Manager") as demo:
220
+ gr.Markdown("## 🧠 CreditCopilot — KYC Management\nUpload KYC documents, extract details, and generate a compliance summary.")
221
+ with gr.Row():
222
+ with gr.Column(scale=1):
223
+ name = gr.Textbox(label="Applicant Name", placeholder="Enter applicant full name")
224
+ provided_docs = gr.CheckboxGroup(
225
+ choices=REQUIRED_DOCS, value=["Government ID"], label="Provided Documents"
226
+ )
227
+ id_doc = gr.File(label="Government ID (PDF or image)")
228
+ selfie_doc = gr.File(label="Selfie / Liveness (optional)")
229
+ address_doc = gr.File(label="Proof of Address (optional)")
230
+ run_btn = gr.Button("Run KYC Analysis", variant="primary")
231
+ with gr.Column(scale=2):
232
+ summary_out = gr.Markdown()
233
+ json_out = gr.Code(language="json")
234
+ download_link = gr.HTML()
235
+
236
+ run_btn.click(
237
+ fn=run_kyc,
238
+ inputs=[name, provided_docs, id_doc, selfie_doc, address_doc],
239
+ outputs=[summary_out, json_out, download_link],
240
+ )
241
+
242
+ if __name__ == "__main__":
243
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ gradio==4.44.0
2
+ pdfplumber==0.11.4
3
+ Pillow==10.4.0
4
+ pytesseract==0.3.13
5
+ huggingface_hub==0.24.6