# Some of the implementations below are adopted from # https://huggingface.co/spaces/sczhou/CodeFormer and https://huggingface.co/spaces/wzhouxiff/RestoreFormerPlusPlus import os import matplotlib.pyplot as plt if os.getenv('SPACES_ZERO_GPU') == "true": os.environ['SPACES_ZERO_GPU'] = "1" os.environ['K_DIFFUSION_USE_COMPILE'] = "0" import spaces import cv2 from tqdm import tqdm import gradio as gr import random import torch from basicsr.archs.rrdbnet_arch import RRDBNet from basicsr.utils import img2tensor, tensor2img from facexlib.utils.face_restoration_helper import FaceRestoreHelper from realesrgan.utils import RealESRGANer from lightning_models.mmse_rectified_flow import MMSERectifiedFlow MAX_SEED = 10000 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") os.makedirs('pretrained_models', exist_ok=True) realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth' if not os.path.exists(realesr_model_path): os.system( "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth") # # background enhancer with RealESRGAN # model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') # half = True if torch.cuda.is_available() else False # upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=400, tile_pad=10, pre_pad=0, # half=half) def set_realesrgan(): use_half = False if torch.cuda.is_available(): # set False in CPU/MPS mode no_half_gpu_list = ['1650', '1660'] # set False for GPUs that don't support f16 if not True in [gpu in torch.cuda.get_device_name(0) for gpu in no_half_gpu_list]: use_half = True model = RRDBNet( num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2, ) upsampler = RealESRGANer( scale=2, model_path="https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth", model=model, tile=400, tile_pad=40, pre_pad=0, half=use_half ) return upsampler upsampler = set_realesrgan() pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device=device) def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device): source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0) dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) x_t_next = source_dist_samples.clone() t_one = torch.ones(x.shape[0], device=device) for i in tqdm(range(num_flow_steps)): num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype) x_t_next = x_t_next.clone() + v_t_next * dt return x_t_next.clip(0, 1) def resize(img, size): # From https://github.com/sczhou/CodeFormer/blob/master/facelib/utils/face_restoration_helper.py h, w = img.shape[0:2] scale = size / min(h, w) h, w = int(h * scale), int(w * scale) interp = cv2.INTER_AREA if scale < 1 else cv2.INTER_LINEAR return cv2.resize(img, (w, h), interpolation=interp) @torch.inference_mode() @spaces.GPU() def enhance_face(img, face_helper, has_aligned, num_flow_steps, scale=2): face_helper.clean_all() if has_aligned: # The inputs are already aligned img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) face_helper.cropped_faces = [img] else: face_helper.read_image(img) face_helper.input_img = resize(face_helper.input_img, 640) face_helper.get_face_landmarks_5(only_center_face=False, eye_dist_threshold=5) face_helper.align_warp_face() if len(face_helper.cropped_faces) == 0: raise gr.Error("Could not identify any face in the image.") if len(face_helper.cropped_faces) > 1: gr.Info(f"Identified {len(face_helper.cropped_faces)} " f"faces in the image. The algorithm will enhance the quality of each face.") else: gr.Info(f"Identified one face in the image.") # face restoration for i, cropped_face in tqdm(enumerate(face_helper.cropped_faces)): cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(device) output = generate_reconstructions(pmrf, torch.zeros_like(cropped_face_t), cropped_face_t, None, num_flow_steps, device) restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1)) restored_face = restored_face.astype("uint8") face_helper.add_restored_face(restored_face) if not has_aligned: # upsample the background # Now only support RealESRGAN for upsampling background bg_img = upsampler.enhance(img, outscale=scale)[0] face_helper.get_inverse_affine(None) # paste each restored face to the input image restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img) print(bg_img.shape, img.shape,restored_img.shape) return face_helper.cropped_faces, face_helper.restored_faces, restored_img else: return face_helper.cropped_faces, face_helper.restored_faces, None @torch.inference_mode() @spaces.GPU() def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps, progress=gr.Progress(track_tqdm=True)): if img is None: raise gr.Error("Please upload an image before submitting.") if randomize_seed: seed = random.randint(0, MAX_SEED) torch.manual_seed(seed) img = cv2.imread(img, cv2.IMREAD_COLOR) h, w = img.shape[0:2] if h > 4500 or w > 4500: raise gr.Error('Image size too large.') face_helper = FaceRestoreHelper( scale, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=device, model_rootpath=None) has_aligned = aligned cropped_face, restored_faces, restored_img = enhance_face(img, face_helper, has_aligned, num_flow_steps=num_flow_steps, scale=scale) if has_aligned: output = restored_faces[0] else: output = restored_img output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) for i, restored_face in enumerate(restored_faces): restored_faces[i] = cv2.cvtColor(restored_face, cv2.COLOR_BGR2RGB) torch.cuda.empty_cache() return output, restored_faces intro = """

Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration

[Paper] |  [Project Page] |  [Code]

""" markdown_top = """ Gradio demo for the blind face image restoration version of [Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration](https://arxiv.org/abs/2410.00418). You may use this demo to enhance the quality of any image which contains faces. Please refer to our project's page for more details: https://pmrf-ml.github.io/. *Notes* : 1. Our model is designed to restore aligned face images, where there is *only one* face in the image, and the face is centered and aligned. Here, however, we incorporate mechanisms that allow restoring the quality of *any* image that contains *any* number of faces. Thus, the resulting quality of such general images is not guaranteed. 2. If the faces in your image are not aligned, make sure that the checkbox "The input is an aligned face image" in *not* marked. 3. Too large images may result in out-of-memory error. --- """ article = r""" If you find our work useful, please help to ⭐ our GitHub repository. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/ohayonguy/PMRF?style=social)](https://github.com/ohayonguy/PMRF) 📝 **Citation** ```bibtex @article{ohayon2024pmrf, author = {Guy Ohayon and Tomer Michaeli and Michael Elad}, title = {Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration}, journal = {arXiv preprint arXiv:2410.00418}, year = {2024}, url = {https://arxiv.org/abs/2410.00418} } ``` 📋 **License** This project is released under the MIT license. 📧 **Contact** If you have any questions, please feel free to contact me at guyoep@gmail.com. """ css = """ #col-container { margin: 0 auto; max-width: 512px; } """ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: gr.HTML(intro) gr.Markdown(markdown_top) with gr.Row(): with gr.Column(scale=2): input_im = gr.Image(label="Input", type="filepath", show_label=True) with gr.Column(scale=1): num_inference_steps = gr.Slider( label="Number of Inference Steps", minimum=1, maximum=200, step=1, value=25, ) upscale_factor = gr.Slider( label="Scale factor. Applicable only to non-aligned face images. This will upscale the entire image.", minimum=1, maximum=4, step=0.1, value=1, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) aligned = gr.Checkbox(label="The input is an aligned face image.", value=False) with gr.Row(): run_button = gr.Button(value="Submit", variant="primary") with gr.Row(): result = gr.Image(label="Output", type="numpy", show_label=True) with gr.Row(): gallery = gr.Gallery(label="Restored faces gallery", type="numpy", show_label=True) examples = gr.Examples( examples=[ [42, False, "examples/01.png", False, 1, 25], [42, False, "examples/03.jpg", False, 2, 25], [42, False, "examples/00000055.png", True, 1, 25], [42, False, "examples/00000085.png", True, 1, 25], [42, False, "examples/00000113.png", True, 1, 25], [42, False, "examples/00000137.png", True, 1, 25], ], fn=inference, inputs=[ seed, randomize_seed, input_im, aligned, upscale_factor, num_inference_steps, ], outputs=[result, gallery], cache_examples="lazy", ) gr.Markdown(article) gr.on( [run_button.click], fn=inference, inputs=[ seed, randomize_seed, input_im, aligned, upscale_factor, num_inference_steps, ], outputs=[result, gallery], # show_api=False, # show_progress="minimal", ) demo.queue() demo.launch(state_session_capacity=15)