import os if os.getenv('SPACES_ZERO_GPU') == "true": os.environ['SPACES_ZERO_GPU'] = "1" os.environ['K_DIFFUSION_USE_COMPILE'] = "0" import spaces import cv2 from tqdm import tqdm import gradio as gr import random import torch from basicsr.archs.srvgg_arch import SRVGGNetCompact from basicsr.utils import img2tensor, tensor2img from gradio_imageslider import ImageSlider from facexlib.utils.face_restoration_helper import FaceRestoreHelper from realesrgan.utils import RealESRGANer from lightning_models.mmse_rectified_flow import MMSERectifiedFlow torch.set_grad_enabled(False) MAX_SEED = 1000000 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") os.makedirs('pretrained_models', exist_ok=True) realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth' if not os.path.exists(realesr_model_path): os.system( "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth") # background enhancer with RealESRGAN model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') half = True if torch.cuda.is_available() else False upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=400, tile_pad=10, pre_pad=0, half=half) pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device=device) face_helper_dummy = FaceRestoreHelper( 1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=device, model_rootpath=None) def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device): source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0) dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) x_t_next = source_dist_samples.clone() t_one = torch.ones(x.shape[0], device=device) for i in tqdm(range(num_flow_steps)): num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype) x_t_next = x_t_next.clone() + v_t_next * dt return x_t_next.clip(0, 1).to(torch.float32) @torch.inference_mode() @spaces.GPU() def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2): face_helper.clean_all() if has_aligned: # the inputs are already aligned img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) face_helper.cropped_faces = [img] else: face_helper.read_image(img) face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5) # eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels # TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations. # align and warp each face face_helper.align_warp_face() if len(face_helper.cropped_faces) == 0: raise gr.Error("Could not identify any face in the image.") if len(face_helper.cropped_faces) > 1: gr.Info(f"Identified {len(face_helper.cropped_faces)} faces in the image. The algorithm will enhance the quality of each face.") else: gr.Info(f"Identified one face in the image.") # face restoration for i, cropped_face in tqdm(enumerate(face_helper.cropped_faces)): # prepare data h, w = cropped_face.shape[0], cropped_face.shape[1] cropped_face = cv2.resize(cropped_face, (512, 512), interpolation=cv2.INTER_LINEAR) # face_helper.cropped_faces[i] = cropped_face cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(device) dummy_x = torch.zeros_like(cropped_face_t) output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, num_flow_steps, device) restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1)) restored_face = cv2.resize(restored_face, (h, w), interpolation=cv2.INTER_LINEAR) restored_face = restored_face.astype('uint8') face_helper.add_restored_face(restored_face) if not has_aligned and paste_back: # upsample the background if upsampler is not None: # Now only support RealESRGAN for upsampling background bg_img = upsampler.enhance(img, outscale=scale)[0] else: bg_img = None face_helper.get_inverse_affine(None) # paste each restored face to the input image restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img) return face_helper.cropped_faces, face_helper.restored_faces, restored_img else: return face_helper.cropped_faces, face_helper.restored_faces, None @torch.inference_mode() @spaces.GPU() def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps, progress=gr.Progress(track_tqdm=True)): if img is None: raise gr.Error("Please upload an image before submitting.") if randomize_seed: seed = random.randint(0, MAX_SEED) torch.manual_seed(seed) if scale > 4: scale = 4 # avoid too large scale value img = cv2.imread(img, cv2.IMREAD_UNCHANGED) if len(img.shape) == 2: # for gray inputs img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) h, w = img.shape[0:2] if h > 4500 or w > 4500: raise gr.Error('Image size too large.') face_helper = FaceRestoreHelper( scale, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=device, model_rootpath=None) has_aligned = True if aligned == 'Yes' else False cropped_face, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False, paste_back=True, num_flow_steps=num_flow_steps, scale=scale) if has_aligned: output = restored_aligned[0] # input = cropped_face[0].astype('uint8') else: output = restored_img # input = img output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) # h, w = output.shape[0:2] # input = cv2.cvtColor(input, cv2.COLOR_BGR2RGB) # input = cv2.resize(input, (h, w), interpolation=cv2.INTER_LINEAR) return output intro = """