# Two types of reconstructionl layers: 1. original residual layers, 2. residual layers with contrast and adaptive attention(CCA layer) import torch import torch.nn as nn import torch.nn.init as init def initialize_weights(net_l, scale=1): if not isinstance(net_l, list): net_l = [net_l] for net in net_l: for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale # for residual block if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, a=0, mode='fan_in') m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias.data, 0.0) def make_layer(block, n_layers): layers = [] for _ in range(n_layers): layers.append(block()) return nn.Sequential(*layers) class ResidualBlock_noBN(nn.Module): """Residual block w/o BN ---Conv-ReLU-Conv-+- |________________| """ def __init__(self, nf=64): super(ResidualBlock_noBN, self).__init__() self.conv1 = nn.Conv2d(nf, nf, kernel_size=3, stride=1, padding=1, bias=True) self.conv2 = nn.Conv2d(nf, nf, kernel_size=3, stride=1, padding=1, bias=True) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): """ Args: x: with shape of [b, c, t, h, w] Returns: processed features with shape [b, c, t, h, w] """ identity = x out = self.lrelu(self.conv1(x)) out = self.conv2(out) out = identity + out # Remove ReLU at the end of the residual block # http://torch.ch/blog/2016/02/04/resnets.html return out class ResBlock_noBN_new(nn.Module): def __init__(self, nf): super(ResBlock_noBN_new, self).__init__() self.c1 = nn.Conv3d(nf, nf // 4, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1), bias=True) self.d1 = nn.Conv3d(nf // 4, nf // 4, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1), bias=True) # dilation rate=1 self.d2 = nn.Conv3d(nf // 4, nf // 4, kernel_size=(1, 3, 3), stride=1, padding=(0, 2, 2), dilation=(1, 2, 2), bias=True) # dilation rate=2 self.d3 = nn.Conv3d(nf // 4, nf // 4, kernel_size=(1, 3, 3), stride=1, padding=(0, 4, 4), dilation=(1, 4, 4), bias=True) # dilation rate=4 self.d4 = nn.Conv3d(nf // 4, nf // 4, kernel_size=(1, 3, 3), stride=1, padding=(0, 8, 8), dilation=(1, 8, 8), bias=True) # dilation rate=8 self.act = nn.LeakyReLU(negative_slope=0.2, inplace=True) self.c2 = nn.Conv3d(nf, nf, kernel_size=(1, 3, 3), stride=1, padding=(0, 1, 1), bias=True) def forward(self, x): output1 = self.act(self.c1(x)) d1 = self.d1(output1) d2 = self.d2(output1) d3 = self.d3(output1) d4 = self.d4(output1) add1 = d1 + d2 add2 = add1 + d3 add3 = add2 + d4 combine = torch.cat([d1, add1, add2, add3], dim=1) output2 = self.c2(self.act(combine)) output = x + output2 # remove ReLU at the end of the residual block # http://torch.ch/blog/2016/02/04/resnets.html return output class CCALayer(nn.Module): #############################################3 new '''Residual block w/o BN --conv--contrast-conv--x--- | \--mean--| | |___________________| ''' def __init__(self, nf=64): super(CCALayer, self).__init__() self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) self.conv_du = nn.Sequential( nn.Conv2d(nf, 4, 1, padding=0, bias=True), nn.ReLU(inplace=True), nn.Conv2d(4, nf, 1, padding=0, bias=True), nn.Tanh() # change from `Sigmoid` to `Tanh` to make the output between -1 and 1 ) self.contrast = stdv_channels self.avg_pool = nn.AdaptiveAvgPool2d(1) # initialization initialize_weights([self.conv1, self.conv_du], 0.1) def forward(self, x): identity = x out = self.lrelu(self.conv1(x)) out = self.conv2(out) out = self.contrast(out) + self.avg_pool(out) out_channel = self.conv_du(out) out_channel = out_channel * out out_last = out_channel + identity return out_last def mean_channels(F): assert (F.dim() == 4), 'Your dim is {} bit not 4'.format(F.dim()) spatial_sum = F.sum(3, keepdim=True).sum(2, keepdim=True) return spatial_sum / (F.size(2) * F.size(3)) # 对每一个channel都求其特征图的高和宽的平均值 def stdv_channels(F): assert F.dim() == 4, 'Your dim is {} bit not 4'.format(F.dim()) F_mean = mean_channels(F) F_variance = (F - F_mean).pow(2).sum(3, keepdim=True).sum(2, keepdim=True) / (F.size(2) * F.size(3)) return F_variance.pow(0.5)