import torch import logging logger = logging.getLogger('global') def check_keys(model, pretrained_state_dict): ckpt_keys = set(pretrained_state_dict.keys()) model_keys = set(model.state_dict().keys()) used_pretrained_keys = model_keys & ckpt_keys unused_pretrained_keys = ckpt_keys - model_keys missing_keys = model_keys - ckpt_keys if len(missing_keys) > 0: logger.info('[Warning] missing keys: {}'.format(missing_keys)) logger.info('missing keys:{}'.format(len(missing_keys))) if len(unused_pretrained_keys) > 0: logger.info('[Warning] unused_pretrained_keys: {}'.format(unused_pretrained_keys)) logger.info('unused checkpoint keys:{}'.format(len(unused_pretrained_keys))) logger.info('used keys:{}'.format(len(used_pretrained_keys))) assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint' return True def remove_prefix(state_dict, prefix): ''' Old style model is stored with all names of parameters share common prefix 'module.' ''' logger.info('remove prefix \'{}\''.format(prefix)) f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x return {f(key): value for key, value in state_dict.items()} def load_pretrain(model, pretrained_path): logger.info('load pretrained model from {}'.format(pretrained_path)) if not torch.cuda.is_available(): pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage) else: device = torch.cuda.current_device() pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device)) if "state_dict" in pretrained_dict.keys(): pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.') else: pretrained_dict = remove_prefix(pretrained_dict, 'module.') try: check_keys(model, pretrained_dict) except: logger.info('[Warning]: using pretrain as features. Adding "features." as prefix') new_dict = {} for k, v in pretrained_dict.items(): k = 'features.' + k new_dict[k] = v pretrained_dict = new_dict check_keys(model, pretrained_dict) model.load_state_dict(pretrained_dict, strict=False) return model def restore_from(model, optimizer, ckpt_path): logger.info('restore from {}'.format(ckpt_path)) device = torch.cuda.current_device() ckpt = torch.load(ckpt_path, map_location=lambda storage, loc: storage.cuda(device)) epoch = ckpt['epoch'] best_acc = ckpt['best_acc'] arch = ckpt['arch'] ckpt_model_dict = remove_prefix(ckpt['state_dict'], 'module.') check_keys(model, ckpt_model_dict) model.load_state_dict(ckpt_model_dict, strict=False) check_keys(optimizer, ckpt['optimizer']) optimizer.load_state_dict(ckpt['optimizer']) return model, optimizer, epoch, best_acc, arch