# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py from typing import TYPE_CHECKING, List, Optional from transformers import Seq2SeqTrainingArguments from ...data import get_dataset, split_dataset from ...extras.constants import IGNORE_INDEX from ...extras.ploting import plot_loss from ...hparams import ModelArguments from ...model import load_model_and_tokenizer from ...train.dpo.collator import DPODataCollatorWithPadding from ...train.dpo.trainer import CustomDPOTrainer from ...train.utils import create_modelcard_and_push, create_ref_model if TYPE_CHECKING: from transformers import TrainerCallback from ...hparams import DataArguments, FinetuningArguments def run_dpo( model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", callbacks: Optional[List["TrainerCallback"]] = None, ): model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train) dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="rm") data_collator = DPODataCollatorWithPadding( tokenizer=tokenizer, pad_to_multiple_of=8, label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id, ) # Create reference model if finetuning_args.ref_model is None and (not training_args.do_train): # use the model itself ref_model = model else: ref_model = create_ref_model(model_args, finetuning_args) # Update arguments training_args_dict = training_args.to_dict() training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset training_args = Seq2SeqTrainingArguments(**training_args_dict) # Initialize our Trainer trainer = CustomDPOTrainer( beta=finetuning_args.dpo_beta, loss_type=finetuning_args.dpo_loss, ftx_gamma=finetuning_args.dpo_ftx, model=model, ref_model=ref_model, args=training_args, tokenizer=tokenizer, data_collator=data_collator, callbacks=callbacks, **split_dataset(dataset, data_args, training_args), ) # Training if training_args.do_train: train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() if trainer.is_world_process_zero() and finetuning_args.plot_loss: plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) # Evaluation if training_args.do_eval: metrics = trainer.evaluate(metric_key_prefix="eval") if id(model) == id(ref_model): # unable to compute rewards without a reference model remove_keys = [key for key in metrics.keys() if "rewards" in key] for key in remove_keys: metrics.pop(key) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Create model card create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)