#!/usr/bin/env python3 import gradio as gr import argparse, configparser, datetime, json, logging, os, platform, requests, shutil, subprocess, sys, time, unicodedata import zipfile from datetime import datetime import contextlib import ffmpeg import torch import yt_dlp ####### # Function Sections # # System Checks # Processing Paths and local file handling # Video Download/Handling # Audio Transcription # Diarization # Summarizers # Main # ####### # To Do # Offline diarization - https://github.com/pyannote/pyannote-audio/blob/develop/tutorials/community/offline_usage_speaker_diarization.ipynb # Dark mode changes under gradio # # Changes made to app.py version: # 1. Removal of video files after conversion -> check main function # 2. Usage of/Hardcoding HF_TOKEN as token for API calls # 3. Usage of HuggingFace for Inference # 4. Other stuff I can't remember. Will eventually do a diff and document them. # #### # # TL/DW: Too Long Didn't Watch # # Project originally created by https://github.com/the-crypt-keeper # Modifications made by https://github.com/rmusser01 # All credit to the original authors, I've just glued shit together. # # # Usage: # Transcribe a single URL: # python diarize.py https://example.com/video.mp4 # # Transcribe a single URL and have the resulting transcription summarized: # python diarize.py https://example.com/video.mp4 # # Transcribe a list of files: # python diarize.py ./path/to/your/text_file.txt # # Transcribe a local file: # python diarize.py /path/to/your/localfile.mp4 # # Transcribe a local file and have it summarized: # python diarize.py ./input.mp4 --api_name openai --api_key # # Transcribe a list of files and have them all summarized: # python diarize.py path_to_your_text_file.txt --api_name --api_key # ### ####################### # Config loading # # Read configuration from file config = configparser.ConfigParser() config.read('config.txt') # API Keys anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None) logging.debug(f"Loaded Anthropic API Key: {anthropic_api_key}") cohere_api_key = config.get('API', 'cohere_api_key', fallback=None) logging.debug(f"Loaded cohere API Key: {cohere_api_key}") groq_api_key = config.get('API', 'groq_api_key', fallback=None) logging.debug(f"Loaded groq API Key: {groq_api_key}") openai_api_key = config.get('API', 'openai_api_key', fallback=None) logging.debug(f"Loaded openAI Face API Key: {openai_api_key}") huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None) logging.debug(f"Loaded HuggingFace Face API Key: {huggingface_api_key}") # Models anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229') cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus') groq_model = config.get('API', 'groq_model', fallback='FIXME') openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo') huggingface_model = config.get('API', 'huggingface_model', fallback='CohereForAI/c4ai-command-r-plus') # Local-Models kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate') kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='') llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions') llama_api_key = config.get('Local-API', 'llama_api_key', fallback='') ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions') ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='') # Retrieve output paths from the configuration file output_path = config.get('Paths', 'output_path', fallback='results') # Retrieve processing choice from the configuration file processing_choice = config.get('Processing', 'processing_choice', fallback='cpu') # Log file #logging.basicConfig(filename='debug-runtime.log', encoding='utf-8', level=logging.DEBUG) # # ####################### # Dirty hack - sue me. os.environ['KMP_DUPLICATE_LIB_OK']='True' whisper_models = ["small", "medium", "small.en","medium.en"] source_languages = { "en": "English", "zh": "Chinese", "de": "German", "es": "Spanish", "ru": "Russian", "ko": "Korean", "fr": "French" } source_language_list = [key[0] for key in source_languages.items()] print(r"""_____ _ ________ _ _ |_ _|| | / /| _ \| | | | _ | | | | / / | | | || | | |(_) | | | | / / | | | || |/\| | | | | |____ / / | |/ / \ /\ / _ \_/ \_____//_/ |___/ \/ \/ (_) _ _ | | | | | |_ ___ ___ | | ___ _ __ __ _ | __| / _ \ / _ \ | | / _ \ | '_ \ / _` | | |_ | (_) || (_) | | || (_) || | | || (_| | _ \__| \___/ \___/ |_| \___/ |_| |_| \__, |( ) __/ ||/ |___/ _ _ _ _ _ _ _ | |(_) | | ( )| | | | | | __| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__ / _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \ | (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | | \__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_| """) #################################################################################################################################### # System Checks # # # Perform Platform Check userOS = "" def platform_check(): global userOS if platform.system() == "Linux": print("Linux OS detected \n Running Linux appropriate commands") userOS = "Linux" elif platform.system() == "Windows": print("Windows OS detected \n Running Windows appropriate commands") userOS = "Windows" else: print("Other OS detected \n Maybe try running things manually?") exit() # Check for NVIDIA GPU and CUDA availability def cuda_check(): global processing_choice try: nvidia_smi = subprocess.check_output("nvidia-smi", shell=True).decode() if "NVIDIA-SMI" in nvidia_smi: print("NVIDIA GPU with CUDA is available.") processing_choice = "cuda" # Set processing_choice to gpu if NVIDIA GPU with CUDA is available else: print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.") processing_choice = "cpu" # Set processing_choice to cpu if NVIDIA GPU with CUDA is not available except subprocess.CalledProcessError: print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.") processing_choice = "cpu" # Set processing_choice to cpu if nvidia-smi command fails # Ask user if they would like to use either their GPU or their CPU for transcription def decide_cpugpu(): global processing_choice processing_input = input("Would you like to use your GPU or CPU for transcription? (1/cuda)GPU/(2/cpu)CPU): ") if processing_choice == "cuda" and (processing_input.lower() == "cuda" or processing_input == "1"): print("You've chosen to use the GPU.") logging.debug("GPU is being used for processing") processing_choice = "cuda" elif processing_input.lower() == "cpu" or processing_input == "2": print("You've chosen to use the CPU.") logging.debug("CPU is being used for processing") processing_choice = "cpu" else: print("Invalid choice. Please select either GPU or CPU.") # check for existence of ffmpeg def check_ffmpeg(): if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")): logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder") pass else: logging.debug("ffmpeg not installed on the local system/in local PATH") print("ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/") if userOS == "Windows": download_ffmpeg() elif userOS == "Linux": print("You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg','dnf install ffmpeg' or 'pacman', etc.") else: logging.debug("running an unsupported OS") print("You're running an unspported/Un-tested OS") exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)") if exit_script == "y" or "yes" or "1": exit() # Download ffmpeg def download_ffmpeg(): user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ") if user_choice.lower() == 'yes' or 'y' or '1': print("Downloading ffmpeg") url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip" response = requests.get(url) if response.status_code == 200: print("Saving ffmpeg zip file") logging.debug("Saving ffmpeg zip file") zip_path = "ffmpeg-release-essentials.zip" with open(zip_path, 'wb') as file: file.write(response.content) logging.debug("Extracting the 'ffmpeg.exe' file from the zip") print("Extracting ffmpeg.exe from zip file to '/Bin' folder") with zipfile.ZipFile(zip_path, 'r') as zip_ref: ffmpeg_path = "ffmpeg-7.0-essentials_build/bin/ffmpeg.exe" logging.debug("checking if the './Bin' folder exists, creating if not") bin_folder = "Bin" if not os.path.exists(bin_folder): logging.debug("Creating a folder for './Bin', it didn't previously exist") os.makedirs(bin_folder) logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder") zip_ref.extract(ffmpeg_path, path=bin_folder) logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder") src_path = os.path.join(bin_folder, ffmpeg_path) dst_path = os.path.join(bin_folder, "ffmpeg.exe") shutil.move(src_path, dst_path) logging.debug("Removing ffmpeg zip file") print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)") os.remove(zip_path) logging.debug("ffmpeg.exe has been downloaded and extracted to the './Bin' folder.") print("ffmpeg.exe has been successfully downloaded and extracted to the './Bin' folder.") else: logging.error("Failed to download the zip file.") print("Failed to download the zip file.") else: logging.debug("User chose to not download ffmpeg") print("ffmpeg will not be downloaded.") # # #################################################################################################################################### #################################################################################################################################### # Processing Paths and local file handling # # def read_paths_from_file(file_path): """ Reads a file containing URLs or local file paths and returns them as a list. """ paths = [] # Initialize paths as an empty list with open(file_path, 'r') as file: for line in file: line = line.strip() if line and not os.path.exists(os.path.join('results', normalize_title(line.split('/')[-1].split('.')[0]) + '.json')): logging.debug("line successfully imported from file and added to list to be transcribed") paths.append(line) return paths def process_path(path): """ Decides whether the path is a URL or a local file and processes accordingly. """ if path.startswith('http'): logging.debug("file is a URL") return get_youtube(path) # For YouTube URLs, modify to download and extract info elif os.path.exists(path): logging.debug("File is a path") return process_local_file(path) # For local files, define a function to handle them else: logging.error(f"Path does not exist: {path}") return None # FIXME def process_local_file(file_path): logging.info(f"Processing local file: {file_path}") title = normalize_title(os.path.splitext(os.path.basename(file_path))[0]) info_dict = {'title': title} logging.debug(f"Creating {title} directory...") download_path = create_download_directory(title) logging.debug(f"Converting '{title}' to an audio file (wav).") audio_file = convert_to_wav(file_path) # Assumes input files are videos needing audio extraction logging.debug(f"'{title}' succesfully converted to an audio file (wav).") return download_path, info_dict, audio_file # # #################################################################################################################################### #################################################################################################################################### # Video Download/Handling # def process_url(input_path, num_speakers=2, whisper_model="small.en", offset=0, api_name=None, api_key=None, vad_filter=False, download_video_flag=False, demo_mode=True): if demo_mode: api_name = "huggingface" api_key = os.environ.get(HF_TOKEN) print("HUGGINGFACE API KEY CHECK #3: " + api_key) vad_filter = False download_video_flag = False try: results = main(input_path, api_name=api_name, api_key=api_key, num_speakers=num_speakers, whisper_model=whisper_model, offset=offset, vad_filter=vad_filter, download_video_flag=download_video_flag) if results: transcription_result = results[0] json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json') with open(json_file_path, 'r') as file: json_data = json.load(file) summary_file_path = json_file_path.replace('.segments.json', '_summary.txt') if os.path.exists(summary_file_path): return json_data, summary_file_path, json_file_path, summary_file_path else: return json_data, "Summary not available.", json_file_path, None else: return None, "No results found.", None, None except Exception as e: error_message = f"An error occurred: {str(e)}" return None, error_message, None, None def create_download_directory(title): base_dir = "Results" # Remove characters that are illegal in Windows filenames and normalize safe_title = normalize_title(title) logging.debug(f"{title} successfully normalized") session_path = os.path.join(base_dir, safe_title) if not os.path.exists(session_path): os.makedirs(session_path, exist_ok=True) logging.debug(f"Created directory for downloaded video: {session_path}") else: logging.debug(f"Directory already exists for downloaded video: {session_path}") return session_path def normalize_title(title): # Normalize the string to 'NFKD' form and encode to 'ascii' ignoring non-ascii characters title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii') title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?', '').replace('<', '').replace('>', '').replace('|', '') return title def get_youtube(video_url): ydl_opts = { 'format': 'bestaudio[ext=m4a]', 'noplaylist': False, 'quiet': True, 'extract_flat': True } with yt_dlp.YoutubeDL(ydl_opts) as ydl: logging.debug("About to extract youtube info") info_dict = ydl.extract_info(video_url, download=False) logging.debug("Youtube info successfully extracted") return info_dict def get_playlist_videos(playlist_url): ydl_opts = { 'extract_flat': True, 'skip_download': True, 'quiet': True } with yt_dlp.YoutubeDL(ydl_opts) as ydl: info = ydl.extract_info(playlist_url, download=False) if 'entries' in info: video_urls = [entry['url'] for entry in info['entries']] playlist_title = info['title'] return video_urls, playlist_title else: print("No videos found in the playlist.") return [], None def save_to_file(video_urls, filename): with open(filename, 'w') as file: file.write('\n'.join(video_urls)) print(f"Video URLs saved to {filename}") def download_video(video_url, download_path, info_dict, download_video_flag): logging.debug("About to normalize downloaded video title") title = normalize_title(info_dict['title']) if download_video_flag == False: file_path = os.path.join(download_path, f"{title}.m4a") ydl_opts = { 'format': 'bestaudio[ext=m4a]', 'outtmpl': file_path, } with yt_dlp.YoutubeDL(ydl_opts) as ydl: logging.debug("yt_dlp: About to download audio with youtube-dl") ydl.download([video_url]) logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl") return file_path else: video_file_path = os.path.join(download_path, f"{title}_video.mp4") audio_file_path = os.path.join(download_path, f"{title}_audio.m4a") ydl_opts_video = { 'format': 'bestvideo[ext=mp4]', 'outtmpl': video_file_path, } ydl_opts_audio = { 'format': 'bestaudio[ext=m4a]', 'outtmpl': audio_file_path, } with yt_dlp.YoutubeDL(ydl_opts_video) as ydl: logging.debug("yt_dlp: About to download video with youtube-dl") ydl.download([video_url]) logging.debug("yt_dlp: Video successfully downloaded with youtube-dl") with yt_dlp.YoutubeDL(ydl_opts_audio) as ydl: logging.debug("yt_dlp: About to download audio with youtube-dl") ydl.download([video_url]) logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl") output_file_path = os.path.join(download_path, f"{title}.mp4") if userOS == "Windows": logging.debug("Running ffmpeg on Windows...") ffmpeg_command = [ '.\\Bin\\ffmpeg.exe', '-i', video_file_path, '-i', audio_file_path, '-c:v', 'copy', '-c:a', 'copy', output_file_path ] subprocess.run(ffmpeg_command, check=True) elif userOS == "Linux": logging.debug("Running ffmpeg on Linux...") ffmpeg_command = [ 'ffmpeg', '-i', video_file_path, '-i', audio_file_path, '-c:v', 'copy', '-c:a', 'copy', output_file_path ] subprocess.run(ffmpeg_command, check=True) else: logging.error("You shouldn't be here...") exit() os.remove(video_file_path) os.remove(audio_file_path) return output_file_path # # #################################################################################################################################### #################################################################################################################################### # Audio Transcription # # Convert video .m4a into .wav using ffmpeg # ffmpeg -i "example.mp4" -ar 16000 -ac 1 -c:a pcm_s16le "output.wav" # https://www.gyan.dev/ffmpeg/builds/ # #os.system(r'.\Bin\ffmpeg.exe -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"') def convert_to_wav(video_file_path, offset=0): print("Starting conversion process of .m4a to .WAV") out_path = os.path.splitext(video_file_path)[0] + ".wav" try: if os.name == "nt": logging.debug("ffmpeg being ran on windows") if sys.platform.startswith('win'): ffmpeg_cmd = ".\\Bin\\ffmpeg.exe" else: ffmpeg_cmd = 'ffmpeg' # Assume 'ffmpeg' is in PATH for non-Windows systems command = [ ffmpeg_cmd, # Assuming the working directory is correctly set where .\Bin exists "-ss", "00:00:00", # Start at the beginning of the video "-i", video_file_path, "-ar", "16000", # Audio sample rate "-ac", "1", # Number of audio channels "-c:a", "pcm_s16le", # Audio codec out_path ] try: # Redirect stdin from null device to prevent ffmpeg from waiting for input with open(os.devnull, 'rb') as null_file: result = subprocess.run(command, stdin=null_file, text=True, capture_output=True) if result.returncode == 0: logging.info("FFmpeg executed successfully") logging.debug("FFmpeg output: %s", result.stdout) else: logging.error("Error in running FFmpeg") logging.error("FFmpeg stderr: %s", result.stderr) raise RuntimeError(f"FFmpeg error: {result.stderr}") except Exception as e: logging.error("Error occurred - ffmpeg doesn't like windows") raise RuntimeError("ffmpeg failed") exit() elif os.name == "posix": os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"') else: raise RuntimeError("Unsupported operating system") logging.info("Conversion to WAV completed: %s", out_path) except subprocess.CalledProcessError as e: logging.error("Error executing FFmpeg command: %s", str(e)) raise RuntimeError("Error converting video file to WAV") except Exception as e: logging.error("Unexpected error occurred: %s", str(e)) raise RuntimeError("Error converting video file to WAV") return out_path # Transcribe .wav into .segments.json def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False): logging.info('Loading faster_whisper model: %s', whisper_model) from faster_whisper import WhisperModel model = WhisperModel(whisper_model, device=f"{processing_choice}") time_start = time.time() if audio_file_path is None: raise ValueError("No audio file provided") logging.info("Audio file path: %s", audio_file_path) try: _, file_ending = os.path.splitext(audio_file_path) out_file = audio_file_path.replace(file_ending, ".segments.json") if os.path.exists(out_file): logging.info("Segments file already exists: %s", out_file) with open(out_file) as f: segments = json.load(f) return segments logging.info('Starting transcription...') options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter) transcribe_options = dict(task="transcribe", **options) segments_raw, info = model.transcribe(audio_file_path, **transcribe_options) segments = [] for segment_chunk in segments_raw: chunk = { "start": segment_chunk.start, "end": segment_chunk.end, "text": segment_chunk.text } logging.debug("Segment: %s", chunk) segments.append(chunk) logging.info("Transcription completed with faster_whisper") with open(out_file, 'w') as f: json.dump(segments, f, indent=2) except Exception as e: logging.error("Error transcribing audio: %s", str(e)) raise RuntimeError("Error transcribing audio") return segments # # #################################################################################################################################### #################################################################################################################################### # Diarization # # TODO: https://huggingface.co/pyannote/speaker-diarization-3.1 # embedding_model = "pyannote/embedding", embedding_size=512 # embedding_model = "speechbrain/spkrec-ecapa-voxceleb", embedding_size=192 def speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0): """ 1. Generating speaker embeddings for each segments. 2. Applying agglomerative clustering on the embeddings to identify the speaker for each segment. """ try: from pyannote.audio import Audio from pyannote.core import Segment from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding import numpy as np import pandas as pd from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import silhouette_score import tqdm import wave embedding_model = PretrainedSpeakerEmbedding( embedding_model, device=torch.device("cuda" if torch.cuda.is_available() else "cpu")) _,file_ending = os.path.splitext(f'{video_file_path}') audio_file = video_file_path.replace(file_ending, ".wav") out_file = video_file_path.replace(file_ending, ".diarize.json") logging.debug("getting duration of audio file") with contextlib.closing(wave.open(audio_file,'r')) as f: frames = f.getnframes() rate = f.getframerate() duration = frames / float(rate) logging.debug("duration of audio file obtained") print(f"duration of audio file: {duration}") def segment_embedding(segment): logging.debug("Creating embedding") audio = Audio() start = segment["start"] end = segment["end"] # Enforcing a minimum segment length if end-start < 0.3: padding = 0.3-(end-start) start -= padding/2 end += padding/2 print('Padded segment because it was too short:',segment) # Whisper overshoots the end timestamp in the last segment end = min(duration, end) # clip audio and embed clip = Segment(start, end) waveform, sample_rate = audio.crop(audio_file, clip) return embedding_model(waveform[None]) embeddings = np.zeros(shape=(len(segments), embedding_size)) for i, segment in enumerate(tqdm.tqdm(segments)): embeddings[i] = segment_embedding(segment) embeddings = np.nan_to_num(embeddings) print(f'Embedding shape: {embeddings.shape}') if num_speakers == 0: # Find the best number of speakers score_num_speakers = {} for num_speakers in range(2, 10+1): clustering = AgglomerativeClustering(num_speakers).fit(embeddings) score = silhouette_score(embeddings, clustering.labels_, metric='euclidean') score_num_speakers[num_speakers] = score best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x]) print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score") else: best_num_speaker = num_speakers # Assign speaker label clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings) labels = clustering.labels_ for i in range(len(segments)): segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1) with open(out_file,'w') as f: f.write(json.dumps(segments, indent=2)) # Make CSV output def convert_time(secs): return datetime.timedelta(seconds=round(secs)) objects = { 'Start' : [], 'End': [], 'Speaker': [], 'Text': [] } text = '' for (i, segment) in enumerate(segments): if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]: objects['Start'].append(str(convert_time(segment["start"]))) objects['Speaker'].append(segment["speaker"]) if i != 0: objects['End'].append(str(convert_time(segments[i - 1]["end"]))) objects['Text'].append(text) text = '' text += segment["text"] + ' ' objects['End'].append(str(convert_time(segments[i - 1]["end"]))) objects['Text'].append(text) save_path = video_file_path.replace(file_ending, ".csv") df_results = pd.DataFrame(objects) df_results.to_csv(save_path) return df_results, save_path except Exception as e: raise RuntimeError("Error Running inference with local model", e) # # #################################################################################################################################### #################################################################################################################################### #Summarizers # # def extract_text_from_segments(segments): logging.debug(f"Main: extracting text from {segments}") text = ' '.join([segment['text'] for segment in segments]) logging.debug(f"Main: Successfully extracted text from {segments}") return text def summarize_with_openai(api_key, file_path, model): try: logging.debug("openai: Loading json data for summarization") with open(file_path, 'r') as file: segments = json.load(file) logging.debug("openai: Extracting text from the segments") text = extract_text_from_segments(segments) headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } logging.debug("openai: Preparing data + prompt for submittal") prompt_text = f"{text} \n\n\n\nPlease provide a detailed, bulleted list of the points made throughout the transcribed video and any supporting arguments made for said points" data = { "model": model, "messages": [ { "role": "system", "content": "You are a professional summarizer." }, { "role": "user", "content": prompt_text } ], "max_tokens": 4096, # Adjust tokens as needed "temperature": 0.7 } logging.debug("openai: Posting request") response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) if response.status_code == 200: summary = response.json()['choices'][0]['message']['content'].strip() logging.debug("openai: Summarization successful") print("Summarization successful.") return summary else: logging.debug("openai: Summarization failed") print("Failed to process summary:", response.text) return None except Exception as e: logging.debug("openai: Error in processing: %s", str(e)) print("Error occurred while processing summary with openai:", str(e)) return None def summarize_with_claude(api_key, file_path, model): try: logging.debug("anthropic: Loading JSON data") with open(file_path, 'r') as file: segments = json.load(file) logging.debug("anthropic: Extracting text from the segments file") text = extract_text_from_segments(segments) headers = { 'x-api-key': api_key, 'anthropic-version': '2023-06-01', 'Content-Type': 'application/json' } logging.debug("anthropic: Prepping data + prompt for submittal") user_message = { "role": "user", "content": f"{text} \n\n\n\nPlease provide a detailed, bulleted list of the points made throughout the transcribed video and any supporting arguments made for said points" } data = { "model": model, "max_tokens": 4096, # max _possible_ tokens to return "messages": [user_message], "stop_sequences": ["\n\nHuman:"], "temperature": 0.7, "top_k": 0, "top_p": 1.0, "metadata": { "user_id": "example_user_id", }, "stream": False, "system": "You are a professional summarizer." } logging.debug("anthropic: Posting request to API") response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data) # Check if the status code indicates success if response.status_code == 200: logging.debug("anthropic: Post submittal successful") response_data = response.json() try: summary = response_data['content'][0]['text'].strip() logging.debug("anthropic: Summarization succesful") print("Summary processed successfully.") return summary except (IndexError, KeyError) as e: logging.debug("anthropic: Unexpected data in response") print("Unexpected response format from Claude API:", response.text) return None elif response.status_code == 500: # Handle internal server error specifically logging.debug("anthropic: Internal server error") print("Internal server error from API. Retrying may be necessary.") return None else: logging.debug(f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}") print(f"Failed to process summary, status code {response.status_code}: {response.text}") return None except Exception as e: logging.debug("anthropic: Error in processing: %s", str(e)) print("Error occurred while processing summary with anthropic:", str(e)) return None # Summarize with Cohere def summarize_with_cohere(api_key, file_path, model): try: logging.basicConfig(level=logging.DEBUG) logging.debug("cohere: Loading JSON data") with open(file_path, 'r') as file: segments = json.load(file) logging.debug(f"cohere: Extracting text from segments file") text = extract_text_from_segments(segments) headers = { 'accept': 'application/json', 'content-type': 'application/json', 'Authorization': f'Bearer {api_key}' } prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text." data = { "chat_history": [ {"role": "USER", "message": prompt_text} ], "message": "Please provide a summary.", "model": model, "connectors": [{"id": "web-search"}] } logging.debug("cohere: Submitting request to API endpoint") print("cohere: Submitting request to API endpoint") response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data) response_data = response.json() logging.debug("API Response Data: %s", response_data) if response.status_code == 200: if 'text' in response_data: summary = response_data['text'].strip() logging.debug("cohere: Summarization successful") print("Summary processed successfully.") return summary else: logging.error("Expected data not found in API response.") return "Expected data not found in API response." else: logging.error(f"cohere: API request failed with status code {response.status_code}: {resposne.text}") print(f"Failed to process summary, status code {response.status_code}: {response.text}") return f"cohere: API request failed: {response.text}" except Exception as e: logging.error("cohere: Error in processing: %s", str(e)) return f"cohere: Error occurred while processing summary with Cohere: {str(e)}" # https://console.groq.com/docs/quickstart def summarize_with_groq(api_key, file_path, model): try: logging.debug("groq: Loading JSON data") with open(file_path, 'r') as file: segments = json.load(file) logging.debug(f"groq: Extracting text from segments file") text = extract_text_from_segments(segments) headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' } prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text." data = { "messages": [ { "role": "user", "content": prompt_text } ], "model": model } logging.debug("groq: Submitting request to API endpoint") print("groq: Submitting request to API endpoint") response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data) response_data = response.json() logging.debug("API Response Data: %s", response_data) if response.status_code == 200: if 'choices' in response_data and len(response_data['choices']) > 0: summary = response_data['choices'][0]['message']['content'].strip() logging.debug("groq: Summarization successful") print("Summarization successful.") return summary else: logging.error("Expected data not found in API response.") return "Expected data not found in API response." else: logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}") return f"groq: API request failed: {response.text}" except Exception as e: logging.error("groq: Error in processing: %s", str(e)) return f"groq: Error occurred while processing summary with groq: {str(e)}" ################################# # # Local Summarization def summarize_with_llama(api_url, file_path, token): try: logging.debug("llama: Loading JSON data") with open(file_path, 'r') as file: segments = json.load(file) logging.debug(f"llama: Extracting text from segments file") text = extract_text_from_segments(segments) # Define this function to extract text properly headers = { 'accept': 'application/json', 'content-type': 'application/json', } if len(token)>5: headers['Authorization'] = f'Bearer {token}' prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text." data = { "prompt": prompt_text } logging.debug("llama: Submitting request to API endpoint") print("llama: Submitting request to API endpoint") response = requests.post(api_url, headers=headers, json=data) response_data = response.json() logging.debug("API Response Data: %s", response_data) if response.status_code == 200: #if 'X' in response_data: logging.debug(response_data) summary = response_data['content'].strip() logging.debug("llama: Summarization successful") print("Summarization successful.") return summary else: logging.error(f"llama: API request failed with status code {response.status_code}: {response.text}") return f"llama: API request failed: {response.text}" except Exception as e: logging.error("llama: Error in processing: %s", str(e)) return f"llama: Error occurred while processing summary with llama: {str(e)}" # https://lite.koboldai.net/koboldcpp_api#/api%2Fv1/post_api_v1_generate def summarize_with_kobold(api_url, file_path): try: logging.debug("kobold: Loading JSON data") with open(file_path, 'r') as file: segments = json.load(file) logging.debug(f"kobold: Extracting text from segments file") text = extract_text_from_segments(segments) headers = { 'accept': 'application/json', 'content-type': 'application/json', } # FIXME prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the above text." logging.debug(prompt_text) # Values literally c/p from the api docs.... data = { "max_context_length": 8096, "max_length": 4096, "prompt": prompt_text, } logging.debug("kobold: Submitting request to API endpoint") print("kobold: Submitting request to API endpoint") response = requests.post(api_url, headers=headers, json=data) response_data = response.json() logging.debug("kobold: API Response Data: %s", response_data) if response.status_code == 200: if 'results' in response_data and len(response_data['results']) > 0: summary = response_data['results'][0]['text'].strip() logging.debug("kobold: Summarization successful") print("Summarization successful.") return summary else: logging.error("Expected data not found in API response.") return "Expected data not found in API response." else: logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}") return f"kobold: API request failed: {response.text}" except Exception as e: logging.error("kobold: Error in processing: %s", str(e)) return f"kobold: Error occurred while processing summary with kobold: {str(e)}" # https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API def summarize_with_oobabooga(api_url, file_path): try: logging.debug("ooba: Loading JSON data") with open(file_path, 'r') as file: segments = json.load(file) logging.debug(f"ooba: Extracting text from segments file\n\n\n") text = extract_text_from_segments(segments) logging.debug(f"ooba: Finished extracting text from segments file") headers = { 'accept': 'application/json', 'content-type': 'application/json', } prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a french bakery baking cakes. It is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are my favorite." # prompt_text += f"\n\n{text}" # Uncomment this line if you want to include the text variable prompt_text += "\n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text." data = { "mode": "chat", "character": "Example", "messages": [{"role": "user", "content": prompt_text}] } logging.debug("ooba: Submitting request to API endpoint") print("ooba: Submitting request to API endpoint") response = requests.post(api_url, headers=headers, json=data, verify=False) logging.debug("ooba: API Response Data: %s", response) if response.status_code == 200: response_data = response.json() summary = response.json()['choices'][0]['message']['content'] logging.debug("ooba: Summarization successful") print("Summarization successful.") return summary else: logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}") return f"ooba: API request failed with status code {response.status_code}: {response.text}" except Exception as e: logging.error("ooba: Error in processing: %s", str(e)) return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}" def save_summary_to_file(summary, file_path): summary_file_path = file_path.replace('.segments.json', '_summary.txt') logging.debug("Opening summary file for writing, *segments.json with *_summary.txt") with open(summary_file_path, 'w') as file: file.write(summary) logging.info(f"Summary saved to file: {summary_file_path}") # # #################################################################################################################################### #################################################################################################################################### # Gradio UI # # Only to be used when configured with Gradio for HF Space def summarize_with_huggingface(api_key, file_path): logging.debug(f"huggingface: Summarization process starting...") model = "microsoft/Phi-3-mini-128k-instruct" API_URL = f"https://api-inference.huggingface.co/models/{model}" headers = {"Authorization": f"Bearer {api_key}"} with open(file_path, 'r') as file: segments = json.load(file) text = ''.join([segment['text'] for segment in segments]) # FIXME adjust max_length and min_length as needed data = { "inputs": text, "parameters": {"max_length": 4096, "min_length": 100} } max_retries = 5 for attempt in range(max_retries): response = requests.post(API_URL, headers=headers, json=data) if response.status_code == 200: summary = response.json()[0]['summary_text'] return summary, None elif response.status_code == 503: response_data = response.json() wait_time = response_data.get('estimated_time', 10) return None, f"Model is loading, retrying in {int(wait_time)} seconds..." # Sleep before retrying.... time.sleep(wait_time) if api_key == "": api_key = os.environ.get(HF_TOKEN) logging.debug("HUGGINGFACE API KEY CHECK: " + api_key) try: logging.debug("huggingface: Loading json data for summarization") with open(file_path, 'r') as file: segments = json.load(file) logging.debug("huggingface: Extracting text from the segments") text = ' '.join([segment['text'] for segment in segments]) api_key = os.environ.get(HF_TOKEN) logging.debug("HUGGINGFACE API KEY CHECK #2: " + api_key) logging.debug("huggingface: Submitting request...") response = requests.post(API_URL, headers=headers, json=data) if response.status_code == 200: summary = response.json()[0]['summary_text'] logging.debug("huggingface: Summarization successful") print("Summarization successful.") return summary else: logging.error(f"huggingface: Summarization failed with status code {response.status_code}: {response.text}") return f"Failed to process summary, status code {response.status_code}: {response.text}" except Exception as e: logging.error("huggingface: Error in processing: %s", str(e)) print(f"Error occurred while processing summary with huggingface: {str(e)}") return None def same_auth(username, password): return username == password def format_transcription(transcription_result): if transcription_result: json_data = transcription_result['transcription'] return json.dumps(json_data, indent=2) else: return "" def process_text(api_key,text_file): summary,message = summarize_with_huggingface(api_key,text_file) if summary: # Show summary on success return "Summary:",summary else: # Inform user about load/wait time return "Notice:",message def launch_ui(demo_mode=False): def process_transcription(json_data): if json_data: return json.dumps(json_data, indent=2) #return "\n".join([item["text"] for item in json_data]) else: return "" inputs = [ gr.components.Textbox(label="URL of video to be Transcribed/Summarized"), gr.components.Number(value=2, label="Number of Speakers (for Diarization)"), gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model (Can ignore this)"), gr.components.Number(value=0, label="Offset time to start transcribing from\n\n (helpful if you only want part of a video/lecture)") ] if not demo_mode: inputs.extend([ gr.components.Dropdown(choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"], value="huggingface", label="API Name - What LLM service will summarize your transcription"), gr.components.Textbox(label="API Key - Have to provide one, unless you're fine waiting on HuggingFace..."), # gr.components.Checkbox(value=False, label="Download Video"), # gr.components.Checkbox(value=False, label="VAD Filter") ]) iface = gr.Interface( fn=lambda *args: process_url(*args, demo_mode=demo_mode), inputs=inputs, outputs=[ gr.components.Textbox(label="Transcription", value=format_transcription, max_lines=10), # gr.components.Textbox(label="Transcription", value=lambda: "", max_lines=10), gr.components.Textbox(label="Summary or Status Message"), gr.components.File(label="Download Transcription as JSON"), gr.components.File(label="Download Summary as text", visible=lambda summary_file_path: summary_file_path is not None) ], title="Video Transcription and Summarization", description="Submit a video URL for transcription and summarization.", allow_flagging="never", #https://huggingface.co/spaces/bethecloud/storj_theme theme="bethecloud/storj_theme" # FIXME - Figure out how to enable dark mode... # other themes: https://huggingface.co/spaces/gradio/theme-gallery ) iface.launch(share=True) # # ##################################################################################################################################### #################################################################################################################################### # Main() # def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False, download_video_flag=False, demo_mode=False): if input_path is None and args.user_interface: return [] start_time = time.monotonic() paths = [] # Initialize paths as an empty list if os.path.isfile(input_path) and input_path.endswith('.txt'): logging.debug("MAIN: User passed in a text file, processing text file...") paths = read_paths_from_file(input_path) elif os.path.exists(input_path): logging.debug("MAIN: Local file path detected") paths = [input_path] elif (info_dict := get_youtube(input_path)) and 'entries' in info_dict: logging.debug("MAIN: YouTube playlist detected") print("\n\nSorry, but playlists aren't currently supported. You can run the following command to generate a text file that you can then pass into this script though! (It may not work... playlist support seems spotty)" + """\n\n\tpython Get_Playlist_URLs.py \n\n\tThen,\n\n\tpython diarizer.py \n\n""") return else: paths = [input_path] results = [] for path in paths: try: if path.startswith('http'): logging.debug("MAIN: URL Detected") info_dict = get_youtube(path) if info_dict: logging.debug("MAIN: Creating path for video file...") download_path = create_download_directory(info_dict['title']) logging.debug("MAIN: Path created successfully") logging.debug("MAIN: Downloading video from yt_dlp...") video_path = download_video(path, download_path, info_dict, download_video_flag) logging.debug("MAIN: Video downloaded successfully") logging.debug("MAIN: Converting video file to WAV...") audio_file = convert_to_wav(video_path, offset) logging.debug("MAIN: Audio file converted succesfully") else: if os.path.exists(path): logging.debug("MAIN: Local file path detected") download_path, info_dict, audio_file = process_local_file(path) else: logging.error(f"File does not exist: {path}") continue if info_dict: logging.debug("MAIN: Creating transcription file from WAV") segments = speech_to_text(audio_file, whisper_model=whisper_model, vad_filter=vad_filter) transcription_result = { 'video_path': path, 'audio_file': audio_file, 'transcription': segments } results.append(transcription_result) logging.info(f"Transcription complete: {audio_file}") if path.startswith('http'): # Delete the downloaded video file os.remove(video_path) logging.info(f"Deleted downloaded video file: {video_path}") # Perform summarization based on the specified API if api_name and api_key: logging.debug(f"MAIN: Summarization being performed by {api_name}") json_file_path = audio_file.replace('.wav', '.segments.json') if api_name.lower() == 'openai': api_key = openai_api_key try: logging.debug(f"MAIN: trying to summarize with openAI") summary = summarize_with_openai(api_key, json_file_path, openai_model) except requests.exceptions.ConnectionError: r.status_code = "Connection: " elif api_name.lower() == 'anthropic': api_key = anthropic_api_key try: logging.debug(f"MAIN: Trying to summarize with anthropic") summary = summarize_with_claude(api_key, json_file_path, anthropic_model) except requests.exceptions.ConnectionError: r.status_code = "Connection: " elif api_name.lower() == 'cohere': api_key = cohere_api_key try: logging.debug(f"MAIN: Trying to summarize with cohere") summary = summarize_with_cohere(api_key, json_file_path, cohere_model) except requests.exceptions.ConnectionError: r.status_code = "Connection: " elif api_name.lower() == 'groq': api_key = groq_api_key try: logging.debug(f"MAIN: Trying to summarize with Groq") summary = summarize_with_groq(api_key, json_file_path, groq_model) except requests.exceptions.ConnectionError: r.status_code = "Connection: " elif api_name.lower() == 'llama': token = llama_api_key llama_ip = llama_api_IP try: logging.debug(f"MAIN: Trying to summarize with Llama.cpp") summary = summarize_with_llama(llama_ip, json_file_path, token) except requests.exceptions.ConnectionError: r.status_code = "Connection: " elif api_name.lower() == 'kobold': token = kobold_api_key kobold_ip = kobold_api_IP try: logging.debug(f"MAIN: Trying to summarize with kobold.cpp") summary = summarize_with_kobold(kobold_ip, json_file_path) except requests.exceptions.ConnectionError: r.status_code = "Connection: " elif api_name.lower() == 'ooba': token = ooba_api_key ooba_ip = ooba_api_IP try: logging.debug(f"MAIN: Trying to summarize with oobabooga") summary = summarize_with_oobabooga(ooba_ip, json_file_path) except requests.exceptions.ConnectionError: r.status_code = "Connection: " if api_name.lower() == 'huggingface': api_key = huggingface_api_key try: logging.debug(f"MAIN: Trying to summarize with huggingface") summarize_with_huggingface(api_key, json_file_path) except requests.exceptions.ConnectionError: r.status_code = "Connection: " else: logging.warning(f"Unsupported API: {api_name}") summary = None if summary: transcription_result['summary'] = summary logging.info(f"Summary generated using {api_name} API") save_summary_to_file(summary, json_file_path) else: logging.warning(f"Failed to generate summary using {api_name} API") else: logging.info("No API specified. Summarization will not be performed") except Exception as e: logging.error(f"Error processing path: {path}") logging.error(str(e)) end_time = time.monotonic() #print("Total program execution time: " + timedelta(seconds=end_time - start_time)) return results if __name__ == "__main__": parser = argparse.ArgumentParser(description='Transcribe and summarize videos.') parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?') parser.add_argument('-v','--video', action='store_true', help='Download the video instead of just the audio') parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)') parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)') parser.add_argument('-wm', '--whisper_model', type=str, default='small.en', help='Whisper model (default: small.en)') parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)') parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter') parser.add_argument('-log', '--log_level', type=str, default='INFO', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)') parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface') parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode') #parser.add_argument('--log_file', action=str, help='Where to save logfile (non-default)') args = parser.parse_args() print(f"Is CUDA available: {torch.cuda.is_available()}") # True print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") # Tesla T4 # Since this is running in HF.... args.user_interface = True if args.user_interface: launch_ui(demo_mode=args.demo_mode) else: if not args.input_path: parser.print_help() sys.exit(1) logging.basicConfig(level=getattr(logging, args.log_level), format='%(asctime)s - %(levelname)s - %(message)s') logging.info('Starting the transcription and summarization process.') logging.info(f'Input path: {args.input_path}') logging.info(f'API Name: {args.api_name}') logging.debug(f'API Key: {args.api_key}') # ehhhhh logging.info(f'Number of speakers: {args.num_speakers}') logging.info(f'Whisper model: {args.whisper_model}') logging.info(f'Offset: {args.offset}') logging.info(f'VAD filter: {args.vad_filter}') logging.info(f'Log Level: {args.log_level}') #lol if args.api_name and args.api_key: logging.info(f'API: {args.api_name}') logging.info('Summarization will be performed.') else: logging.info('No API specified. Summarization will not be performed.') logging.debug("Platform check being performed...") platform_check() logging.debug("CUDA check being performed...") cuda_check() logging.debug("ffmpeg check being performed...") check_ffmpeg() # Hey, we're in HuggingFace launch_ui(demo_mode=args.demo_mode) try: results = main(args.input_path, api_name=args.api_name, api_key=args.api_key, num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset, vad_filter=args.vad_filter, download_video_flag=args.video) logging.info('Transcription process completed.') except Exception as e: logging.error('An error occurred during the transcription process.') logging.error(str(e)) sys.exit(1)