# Character_Interaction_tab.py # Description: This file contains the functions that are used for Character Interactions in the Gradio UI. # # Imports import base64 import io import uuid from datetime import datetime as datetime import logging import json import os from typing import List, Dict, Tuple, Union # # External Imports import gradio as gr from PIL import Image # # Local Imports from App_Function_Libraries.Chat import chat, load_characters, save_chat_history_to_db_wrapper from App_Function_Libraries.Gradio_UI.Chat_ui import chat_wrapper from App_Function_Libraries.Gradio_UI.Writing_tab import generate_writing_feedback # ######################################################################################################################## # # Single-Character chat Functions: def chat_with_character(user_message, history, char_data, api_name_input, api_key): if char_data is None: return history, "Please import a character card first." bot_message = generate_writing_feedback(user_message, char_data['name'], "Overall", api_name_input, api_key) history.append((user_message, bot_message)) return history, "" def import_character_card(file): if file is None: logging.warning("No file provided for character card import") return None try: if file.name.lower().endswith(('.png', '.webp')): logging.info(f"Attempting to import character card from image: {file.name}") json_data = extract_json_from_image(file) if json_data: logging.info("JSON data extracted from image, attempting to parse") card_data = import_character_card_json(json_data) if card_data: # Save the image data with Image.open(file) as img: img_byte_arr = io.BytesIO() img.save(img_byte_arr, format='PNG') card_data['image'] = base64.b64encode(img_byte_arr.getvalue()).decode('utf-8') return card_data else: logging.warning("No JSON data found in the image") else: logging.info(f"Attempting to import character card from JSON file: {file.name}") content = file.read().decode('utf-8') return import_character_card_json(content) except Exception as e: logging.error(f"Error importing character card: {e}") return None def import_character_card_json(json_content): try: # Remove any leading/trailing whitespace json_content = json_content.strip() # Log the first 100 characters of the content logging.debug(f"JSON content (first 100 chars): {json_content[:100]}...") card_data = json.loads(json_content) logging.debug(f"Parsed JSON data keys: {list(card_data.keys())}") if 'spec' in card_data and card_data['spec'] == 'chara_card_v2': logging.info("Detected V2 character card") return card_data['data'] else: logging.info("Assuming V1 character card") return card_data except json.JSONDecodeError as e: logging.error(f"JSON decode error: {e}") logging.error(f"Problematic JSON content: {json_content[:500]}...") except Exception as e: logging.error(f"Unexpected error parsing JSON: {e}") return None def extract_json_from_image(image_file): logging.debug(f"Attempting to extract JSON from image: {image_file.name}") try: with Image.open(image_file) as img: logging.debug("Image opened successfully") metadata = img.info if 'chara' in metadata: logging.debug("Found 'chara' in image metadata") chara_content = metadata['chara'] logging.debug(f"Content of 'chara' metadata (first 100 chars): {chara_content[:100]}...") try: decoded_content = base64.b64decode(chara_content).decode('utf-8') logging.debug(f"Decoded content (first 100 chars): {decoded_content[:100]}...") return decoded_content except Exception as e: logging.error(f"Error decoding base64 content: {e}") logging.debug("'chara' not found in metadata, checking for base64 encoded data") raw_data = img.tobytes() possible_json = raw_data.split(b'{', 1)[-1].rsplit(b'}', 1)[0] if possible_json: try: decoded = base64.b64decode(possible_json).decode('utf-8') if decoded.startswith('{') and decoded.endswith('}'): logging.debug("Found and decoded base64 JSON data") return '{' + decoded + '}' except Exception as e: logging.error(f"Error decoding base64 data: {e}") logging.warning("No JSON data found in the image") except Exception as e: logging.error(f"Error extracting JSON from image: {e}") return None def load_chat_history(file): try: content = file.read().decode('utf-8') chat_data = json.loads(content) return chat_data['history'], chat_data['character'] except Exception as e: logging.error(f"Error loading chat history: {e}") return None, None def create_character_card_interaction_tab(): with gr.TabItem("Chat with a Character Card"): gr.Markdown("# Chat with a Character Card") with gr.Row(): with gr.Column(scale=1): character_image = gr.Image(label="Character Image", type="filepath") character_card_upload = gr.File(label="Upload Character Card") import_card_button = gr.Button("Import Character Card") load_characters_button = gr.Button("Load Existing Characters") from App_Function_Libraries.Chat import get_character_names character_dropdown = gr.Dropdown(label="Select Character", choices=get_character_names()) user_name_input = gr.Textbox(label="Your Name", placeholder="Enter your name here") api_name_input = gr.Dropdown( choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace", "Custom-OpenAI-API"], value="HuggingFace", # FIXME - make it so the user cant' click `Send Message` without first setting an API + Chatbot label="API for Interaction(Mandatory)" ) api_key_input = gr.Textbox(label="API Key (if not set in Config_Files/config.txt)", placeholder="Enter your API key here", type="password") temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.05, label="Temperature") import_chat_button = gr.Button("Import Chat History") chat_file_upload = gr.File(label="Upload Chat History JSON", visible=False) with gr.Column(scale=2): chat_history = gr.Chatbot(label="Conversation", height=800) user_input = gr.Textbox(label="Your message") send_message_button = gr.Button("Send Message") regenerate_button = gr.Button("Regenerate Last Message") clear_chat_button = gr.Button("Clear Chat") chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True) save_chat_history_to_db = gr.Button("Save Chat History to DataBase") save_status = gr.Textbox(label="Save Status", interactive=False) character_data = gr.State(None) user_name = gr.State("") def import_chat_history(file, current_history, char_data): loaded_history, char_name = load_chat_history(file) if loaded_history is None: return current_history, char_data, "Failed to load chat history." # Check if the loaded chat is for the current character if char_data and char_data.get('name') != char_name: return current_history, char_data, f"Warning: Loaded chat is for character '{char_name}', but current character is '{char_data.get('name')}'. Chat not imported." # If no character is selected, try to load the character from the chat if not char_data: new_char_data = load_character(char_name)[0] if new_char_data: char_data = new_char_data else: return current_history, char_data, f"Warning: Character '{char_name}' not found. Please select the character manually." return loaded_history, char_data, f"Chat history for '{char_name}' imported successfully." def import_character(file): card_data = import_character_card(file) if card_data: from App_Function_Libraries.Chat import save_character save_character(card_data) return card_data, gr.update(choices=get_character_names()) else: return None, gr.update() def load_character(name): from App_Function_Libraries.Chat import load_characters characters = load_characters() char_data = characters.get(name) if char_data: first_message = char_data.get('first_mes', "Hello! I'm ready to chat.") return char_data, [(None, first_message)] if first_message else [], None return None, [], None def load_character_image(name): from App_Function_Libraries.Chat import load_characters characters = load_characters() char_data = characters.get(name) if char_data and 'image_path' in char_data: image_path = char_data['image_path'] if os.path.exists(image_path): return image_path else: logging.warning(f"Image file not found: {image_path}") return None def load_character_and_image(name): char_data, chat_history, _ = load_character(name) image_path = load_character_image(name) logging.debug(f"Character: {name}") logging.debug(f"Character data: {char_data}") logging.debug(f"Image path: {image_path}") return char_data, chat_history, image_path def character_chat_wrapper(message, history, char_data, api_endpoint, api_key, temperature, user_name): logging.debug("Entered character_chat_wrapper") if char_data is None: return "Please select a character first.", history if not user_name: user_name = "User" char_name = char_data.get('name', 'AI Assistant') # Prepare the character's background information char_background = f""" Name: {char_name} Description: {char_data.get('description', 'N/A')} Personality: {char_data.get('personality', 'N/A')} Scenario: {char_data.get('scenario', 'N/A')} """ # Prepare the system prompt for character impersonation system_message = f"""You are roleplaying as {char_name}, the character described below. Respond to the user's messages in character, maintaining the personality and background provided. Do not break character or refer to yourself as an AI. Always refer to yourself as "{char_name}" and refer to the user as "{user_name}". {char_background} Additional instructions: {char_data.get('post_history_instructions', '')} """ # Prepare media_content and selected_parts media_content = { 'id': char_name, 'title': char_name, 'content': char_background, 'description': char_data.get('description', ''), 'personality': char_data.get('personality', ''), 'scenario': char_data.get('scenario', '') } selected_parts = ['description', 'personality', 'scenario'] prompt = char_data.get('post_history_instructions', '') # Prepare the input for the chat function if not history: full_message = f"{prompt}\n\n{user_name}: {message}" if prompt else f"{user_name}: {message}" else: full_message = f"{user_name}: {message}" # Call the chat function bot_message = chat( full_message, history, media_content, selected_parts, api_endpoint, api_key, prompt, temperature, system_message ) # Update history history.append((message, bot_message)) return history def save_chat_history(history, character_name): # Create the Saved_Chats folder if it doesn't exist save_directory = "Saved_Chats" os.makedirs(save_directory, exist_ok=True) timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"chat_history_{character_name}_{timestamp}.json" filepath = os.path.join(save_directory, filename) chat_data = { "character": character_name, "timestamp": timestamp, "history": history } try: with open(filepath, 'w', encoding='utf-8') as f: json.dump(chat_data, f, ensure_ascii=False, indent=2) return filepath except Exception as e: return f"Error saving chat: {str(e)}" def save_current_chat(history, char_data): if not char_data or not history: return "No chat to save or character not selected." character_name = char_data.get('name', 'Unknown') result = save_chat_history(history, character_name) if result.startswith("Error"): return result return f"Chat saved successfully as {result}" def regenerate_last_message(history, char_data, api_name, api_key, temperature, user_name): if not history: return history last_user_message = history[-1][0] new_history = history[:-1] return character_chat_wrapper(last_user_message, new_history, char_data, api_name, api_key, temperature, user_name) import_chat_button.click( fn=lambda: gr.update(visible=True), outputs=chat_file_upload ) chat_file_upload.change( fn=import_chat_history, inputs=[chat_file_upload, chat_history, character_data], outputs=[chat_history, character_data, save_status] ) def update_character_info(name): from App_Function_Libraries.Chat import load_characters characters = load_characters() char_data = characters.get(name) image_path = char_data.get('image_path') if char_data else None logging.debug(f"Character: {name}") logging.debug(f"Character data: {char_data}") logging.debug(f"Image path: {image_path}") if image_path: if os.path.exists(image_path): logging.debug(f"Image file exists at {image_path}") if os.access(image_path, os.R_OK): logging.debug(f"Image file is readable") else: logging.warning(f"Image file is not readable: {image_path}") image_path = None else: logging.warning(f"Image file does not exist: {image_path}") image_path = None else: logging.warning("No image path provided for the character") return char_data, None, image_path # Return None for chat_history def on_character_select(name): logging.debug(f"Character selected: {name}") return update_character_info_with_error_handling(name) def clear_chat_history(): return [], None # Return empty list for chat_history and None for character_data def update_character_info_with_error_handling(name): logging.debug(f"Entering update_character_info_with_error_handling for character: {name}") try: char_data, _, image_path = update_character_info(name) logging.debug(f"Retrieved data: char_data={bool(char_data)}, image_path={image_path}") if char_data: first_message = char_data.get('first_mes', "Hello! I'm ready to chat.") chat_history = [(None, first_message)] if first_message else [] else: chat_history = [] logging.debug(f"Created chat_history with length: {len(chat_history)}") if image_path and os.path.exists(image_path): logging.debug(f"Image file exists at {image_path}") return char_data, chat_history, image_path else: logging.warning(f"Image not found or invalid path: {image_path}") return char_data, chat_history, None except Exception as e: logging.error(f"Error updating character info: {str(e)}", exc_info=True) return None, [], None finally: logging.debug("Exiting update_character_info_with_error_handling") # Define States for conversation_id and media_content, which are required for saving chat history conversation_id = gr.State(str(uuid.uuid4())) media_content = gr.State({}) import_card_button.click( fn=import_character, inputs=[character_card_upload], outputs=[character_data, character_dropdown] ) load_characters_button.click( fn=lambda: gr.update(choices=get_character_names()), outputs=character_dropdown ) clear_chat_button.click( fn=clear_chat_history, inputs=[], outputs=[chat_history, character_data] ) character_dropdown.change( fn=on_character_select, inputs=[character_dropdown], outputs=[character_data, chat_history, character_image] ) send_message_button.click( fn=character_chat_wrapper, inputs=[user_input, chat_history, character_data, api_name_input, api_key_input, temperature_slider, user_name_input], outputs=[chat_history] ).then(lambda: "", outputs=user_input) regenerate_button.click( fn=regenerate_last_message, inputs=[chat_history, character_data, api_name_input, api_key_input, temperature_slider, user_name_input], outputs=[chat_history] ) user_name_input.change( fn=lambda name: name, inputs=[user_name_input], outputs=[user_name] ) # FIXME - Implement saving chat history to database; look at Chat_UI.py for reference save_chat_history_to_db.click( save_chat_history_to_db_wrapper, inputs=[chat_history, conversation_id, media_content, chat_media_name], outputs=[conversation_id, gr.Textbox(label="Save Status")] ) return character_data, chat_history, user_input, user_name, character_image # # End of Character chat tab ###################################################################################################################### # # Multi-Character Chat Interface def character_interaction_setup(): characters = load_characters() return characters, [], None, None def extract_character_response(response: Union[str, Tuple]) -> str: if isinstance(response, tuple): # If it's a tuple, try to extract the first string element for item in response: if isinstance(item, str): return item.strip() # If no string found, return a default message return "I'm not sure how to respond." elif isinstance(response, str): # If it's already a string, just return it return response.strip() else: # For any other type, return a default message return "I'm having trouble forming a response." # def process_character_response(response: str) -> str: # # Remove any leading explanatory text before the first '---' # parts = response.split('---') # if len(parts) > 1: # return '---' + '---'.join(parts[1:]) # return response.strip() def process_character_response(response: Union[str, Tuple]) -> str: if isinstance(response, tuple): response = ' '.join(str(item) for item in response if isinstance(item, str)) if isinstance(response, str): # Remove any leading explanatory text before the first '---' parts = response.split('---') if len(parts) > 1: return '---' + '---'.join(parts[1:]) return response.strip() else: return "I'm having trouble forming a response." def character_turn(characters: Dict, conversation: List[Tuple[str, str]], current_character: str, other_characters: List[str], api_endpoint: str, api_key: str, temperature: float, scenario: str = "") -> Tuple[List[Tuple[str, str]], str]: if not current_character or current_character not in characters: return conversation, current_character if not conversation and scenario: conversation.append(("Scenario", scenario)) current_char = characters[current_character] other_chars = [characters[char] for char in other_characters if char in characters and char != current_character] prompt = f"{current_char['name']}'s personality: {current_char['personality']}\n" for char in other_chars: prompt += f"{char['name']}'s personality: {char['personality']}\n" prompt += "Conversation so far:\n" + "\n".join([f"{sender}: {message}" for sender, message in conversation]) prompt += f"\n\nHow would {current_char['name']} respond?" try: response = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "") processed_response = process_character_response(response) conversation.append((current_char['name'], processed_response)) except Exception as e: error_message = f"Error generating response: {str(e)}" conversation.append((current_char['name'], error_message)) return conversation, current_character def character_interaction(character1: str, character2: str, api_endpoint: str, api_key: str, num_turns: int, scenario: str, temperature: float, user_interjection: str = "") -> List[str]: characters = load_characters() char1 = characters[character1] char2 = characters[character2] conversation = [] current_speaker = char1 other_speaker = char2 # Add scenario to the conversation start if scenario: conversation.append(f"Scenario: {scenario}") for turn in range(num_turns): # Construct the prompt for the current speaker prompt = f"{current_speaker['name']}'s personality: {current_speaker['personality']}\n" prompt += f"{other_speaker['name']}'s personality: {other_speaker['personality']}\n" prompt += f"Conversation so far:\n" + "\n".join( [msg if isinstance(msg, str) else f"{msg[0]}: {msg[1]}" for msg in conversation]) # Add user interjection if provided if user_interjection and turn == num_turns // 2: prompt += f"\n\nUser interjection: {user_interjection}\n" conversation.append(f"User: {user_interjection}") prompt += f"\n\nHow would {current_speaker['name']} respond?" # FIXME - figure out why the double print is happening # Get response from the LLM response = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "") # Add the response to the conversation conversation.append((current_speaker['name'], response)) # Switch speakers current_speaker, other_speaker = other_speaker, current_speaker # Convert the conversation to a list of strings for output return [f"{msg[0]}: {msg[1]}" if isinstance(msg, tuple) else msg for msg in conversation] def create_multiple_character_chat_tab(): with gr.TabItem("Multi-Character Chat"): characters, conversation, current_character, other_character = character_interaction_setup() with gr.Blocks() as character_interaction: gr.Markdown("# Multi-Character Chat") with gr.Row(): num_characters = gr.Dropdown(label="Number of Characters", choices=["2", "3", "4"], value="2") character_selectors = [gr.Dropdown(label=f"Character {i + 1}", choices=list(characters.keys())) for i in range(4)] api_endpoint = gr.Dropdown(label="API Endpoint", choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace", "Custom-OpenAI-API"], value="HuggingFace") api_key = gr.Textbox(label="API Key (if required)", type="password") temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7) scenario = gr.Textbox(label="Scenario (optional)", lines=3) chat_display = gr.Chatbot(label="Character Interaction") current_index = gr.State(0) next_turn_btn = gr.Button("Next Turn") narrator_input = gr.Textbox(label="Narrator Input", placeholder="Add a narration or description...") add_narration_btn = gr.Button("Add Narration") error_box = gr.Textbox(label="Error Messages", visible=False) reset_btn = gr.Button("Reset Conversation") chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True) save_chat_history_to_db = gr.Button("Save Chat History to DataBase") def update_character_selectors(num): return [gr.update(visible=True) if i < int(num) else gr.update(visible=False) for i in range(4)] num_characters.change( update_character_selectors, inputs=[num_characters], outputs=character_selectors ) def reset_conversation(): return [], 0, gr.update(value=""), gr.update(value="") def take_turn(conversation, current_index, char1, char2, char3, char4, api_endpoint, api_key, temperature, scenario): char_selectors = [char for char in [char1, char2, char3, char4] if char] # Remove None values num_chars = len(char_selectors) if num_chars == 0: return conversation, current_index # No characters selected, return without changes if not conversation: conversation = [] if scenario: conversation.append(("Scenario", scenario)) current_character = char_selectors[current_index % num_chars] next_index = (current_index + 1) % num_chars prompt = f"Character speaking: {current_character}\nOther characters: {', '.join(char for char in char_selectors if char != current_character)}\n" prompt += "Generate the next part of the conversation, including character dialogues and actions. Characters should speak in first person." response, new_conversation, _ = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "") # Format the response formatted_lines = [] for line in response.split('\n'): if ':' in line: speaker, text = line.split(':', 1) formatted_lines.append(f"**{speaker.strip()}**: {text.strip()}") else: formatted_lines.append(line) formatted_response = '\n'.join(formatted_lines) # Update the last message in the conversation with the formatted response if new_conversation: new_conversation[-1] = (new_conversation[-1][0], formatted_response) else: new_conversation.append((current_character, formatted_response)) return new_conversation, next_index def add_narration(narration, conversation): if narration: conversation.append(("Narrator", narration)) return conversation, "" def take_turn_with_error_handling(conversation, current_index, char1, char2, char3, char4, api_endpoint, api_key, temperature, scenario): try: new_conversation, next_index = take_turn(conversation, current_index, char1, char2, char3, char4, api_endpoint, api_key, temperature, scenario) return new_conversation, next_index, gr.update(visible=False, value="") except Exception as e: error_message = f"An error occurred: {str(e)}" return conversation, current_index, gr.update(visible=True, value=error_message) # Define States for conversation_id and media_content, which are required for saving chat history media_content = gr.State({}) conversation_id = gr.State(str(uuid.uuid4())) next_turn_btn.click( take_turn_with_error_handling, inputs=[chat_display, current_index] + character_selectors + [api_endpoint, api_key, temperature, scenario], outputs=[chat_display, current_index, error_box] ) add_narration_btn.click( add_narration, inputs=[narrator_input, chat_display], outputs=[chat_display, narrator_input] ) reset_btn.click( reset_conversation, outputs=[chat_display, current_index, scenario, narrator_input] ) # FIXME - Implement saving chat history to database; look at Chat_UI.py for reference save_chat_history_to_db.click( save_chat_history_to_db_wrapper, inputs=[chat_display, conversation_id, media_content, chat_media_name], outputs=[conversation_id, gr.Textbox(label="Save Status")] ) return character_interaction # # End of Multi-Character chat tab ######################################################################################################################## # # Narrator-Controlled Conversation Tab # From `Fuzzlewumper` on Reddit. def create_narrator_controlled_conversation_tab(): with gr.TabItem("Narrator-Controlled Conversation"): gr.Markdown("# Narrator-Controlled Conversation") with gr.Row(): with gr.Column(scale=1): api_endpoint = gr.Dropdown( label="API Endpoint", choices=["Local-LLM", "OpenAI", "Anthropic", "Cohere", "Groq", "DeepSeek", "Mistral", "OpenRouter", "Llama.cpp", "Kobold", "Ooba", "Tabbyapi", "VLLM", "ollama", "HuggingFace", "Custom-OpenAI-API"], value="HuggingFace" ) api_key = gr.Textbox(label="API Key (if required)", type="password") temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.7) with gr.Column(scale=2): narrator_input = gr.Textbox( label="Narrator Input", placeholder="Set the scene or provide context...", lines=3 ) character_inputs = [] for i in range(4): # Allow up to 4 characters with gr.Row(): name = gr.Textbox(label=f"Character {i + 1} Name") description = gr.Textbox(label=f"Character {i + 1} Description", lines=3) character_inputs.append((name, description)) conversation_display = gr.Chatbot(label="Conversation", height=400) user_input = gr.Textbox(label="Your Input (optional)", placeholder="Add your own dialogue or action...") with gr.Row(): generate_btn = gr.Button("Generate Next Interaction") reset_btn = gr.Button("Reset Conversation") chat_media_name = gr.Textbox(label="Custom Chat Name(optional)", visible=True) save_chat_history_to_db = gr.Button("Save Chat History to DataBase") error_box = gr.Textbox(label="Error Messages", visible=False) # Define States for conversation_id and media_content, which are required for saving chat history conversation_id = gr.State(str(uuid.uuid4())) media_content = gr.State({}) def generate_interaction(conversation, narrator_text, user_text, api_endpoint, api_key, temperature, *character_data): try: characters = [{"name": name.strip(), "description": desc.strip()} for name, desc in zip(character_data[::2], character_data[1::2]) if name.strip() and desc.strip()] if not characters: raise ValueError("At least one character must be defined.") prompt = f"Narrator: {narrator_text}\n\n" for char in characters: prompt += f"Character '{char['name']}': {char['description']}\n" prompt += "\nGenerate the next part of the conversation, including character dialogues and actions. " prompt += "Characters should speak in first person. " if user_text: prompt += f"\nIncorporate this user input: {user_text}" prompt += "\nResponse:" response, conversation, _ = chat_wrapper(prompt, conversation, {}, [], api_endpoint, api_key, "", None, False, temperature, "") # Format the response formatted_lines = [] for line in response.split('\n'): if ':' in line: speaker, text = line.split(':', 1) formatted_lines.append(f"**{speaker.strip()}**: {text.strip()}") else: formatted_lines.append(line) formatted_response = '\n'.join(formatted_lines) # Update the last message in the conversation with the formatted response if conversation: conversation[-1] = (conversation[-1][0], formatted_response) else: conversation.append((None, formatted_response)) return conversation, gr.update(value=""), gr.update(value=""), gr.update(visible=False, value="") except Exception as e: error_message = f"An error occurred: {str(e)}" return conversation, gr.update(), gr.update(), gr.update(visible=True, value=error_message) def reset_conversation(): return [], gr.update(value=""), gr.update(value=""), gr.update(visible=False, value="") generate_btn.click( generate_interaction, inputs=[conversation_display, narrator_input, user_input, api_endpoint, api_key, temperature] + [input for char_input in character_inputs for input in char_input], outputs=[conversation_display, narrator_input, user_input, error_box] ) reset_btn.click( reset_conversation, outputs=[conversation_display, narrator_input, user_input, error_box] ) # FIXME - Implement saving chat history to database; look at Chat_UI.py for reference save_chat_history_to_db.click( save_chat_history_to_db_wrapper, inputs=[conversation_display, conversation_id, media_content, chat_media_name], outputs=[conversation_id, gr.Textbox(label="Save Status")] ) return api_endpoint, api_key, temperature, narrator_input, conversation_display, user_input, generate_btn, reset_btn, error_box # # End of Narrator-Controlled Conversation tab ########################################################################################################################